Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Orientifold Planar Equivalence: the Quenched Meson Spectrum

Biagio Lucini Swansea University

(with G. Moraitis, A. Patella, A. Rago)

Lattice 2010

June 14 - 19 Villasimius, Sardinia, Italy

The XXVIII International Symposium on Lattice Field Theory

・ロン ・雪 ・ ・ ヨ ・

Meson Spectrum

Biagio Lucini

Motivations

- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N} = 1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the C-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

A. Armoni, M. Shifman and G. Veneziano. *SUSY relics in one-flavor QCD from a new 1/N expansion*. Phys. Rev. Lett. 91, 191601, 2003.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

A. Armoni, M. Shifman and G. Veneziano. *SUSY relics in one-flavor QCD from a new 1/N expansion.* Phys. Rev. Lett. 91, 191601, 2003.

Meson Spectrum

Biagio Lucini

Motivations

- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

M. Unsal and L. G. Yaffe. (*In*)validity of large N orientifold equivalence. Phys. Rev. D74:105019, 2006.

A. Armoni, M. Shifman and G. Veneziano. *A note on C-parity conservation and the validity of orientifold planar equivalence*. Phys.Lett.B647:515-518,2007.

ヘロマ ヘ団マ ヘビマー

Meson Spectrum

Biagio Lucini

Motivations

- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Assuming that planar equivalence works, how large are the 1/N corrections?

Meson Spectrum

Biagio Lucini

Motivations

- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to N = 1 SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the *C*-symmetry is not spontaneously broken in both theories ⇒ a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the 1/N corrections?

Dynamical fermions difficult to simulate \Rightarrow start with the quenched theory

A. Armoni, B. Lucini, A. Patella and C. Pica. *Lattice Study of Planar Equivalence: The Quark Condensate.* Phys.Rev.D78:045019,2008.

The Quenched Chiral Condensate

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculatior

Large-N extrapolation

Conclusions and perspectives

$$\frac{\langle \lambda \lambda \rangle_{\text{Adj}}(m=0.012)}{N^2} = 0.23050(22) - \frac{0.3134(72)}{N^2}$$
$$\frac{\langle \bar{\psi}\psi \rangle_{\text{AS}}(m=0.012)}{N^2} = 0.23050(22) - \frac{0.4242(11)}{N} - \frac{0.612(43)}{N^2} - \frac{0.811(25)}{N^3}$$
$$\frac{\langle \bar{\psi}\psi \rangle_{\text{S}}(m=0.012)}{N^2} = 0.23050(22) + \frac{0.4242(11)}{N} - \frac{0.612(43)}{N^2} + \frac{0.811(25)}{N^3}$$

A. Armoni, B. Lucini, A. Patella and C. Pica. *Lattice Study of Planar Equivalence: The Quark Condensate.* Phys.Rev.D78:045019,2008.

< 日 > < 回 > < 回 > < 回 > < 回 > <

臣

Outline

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

3

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Biagio Lucini Meson Spectrum

Outline

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

1 Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Biagio Lucini Meson Spectrum

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

Wilson action.

- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

$$S_{YM} = -\frac{2N}{\lambda} \sum_{p} \Re \operatorname{e} \operatorname{tr} U(p)$$

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

$$D_{xy;\alpha\beta} = (m+4r)\delta_{xy}\delta_{\alpha\beta} - K_{xy;\alpha\beta}$$

$$K_{xy;\alpha\beta} = -\frac{1}{2} \left[(r-\gamma_{\mu})_{\alpha\beta} R \left[U_{\mu}(x) \right] \delta_{y,x+\hat{\mu}} + (r+\gamma_{\mu})_{\alpha\beta} R \left[U_{\mu}^{\dagger}(y) \right] \delta_{y,x-\hat{\mu}} \right]$$

ヘロマ ヘ団マ ヘビマー

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

tr Adj[U] = | tr U|² - 1
tr S/AS[U] =
$$\frac{(tr U)^2 \pm tr(U^2)}{2}$$

ヘロマ ヘ団マ ヘビマー

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.

 C_1^l

- The two-index representations.
- The mesonic two-point correlation functions.

$$\begin{split} R_{\Gamma_{1}\Gamma_{2}}(x,y) &= r_{R} \left\langle \bar{\psi}_{a}^{R}(x) \Gamma_{1}^{\dagger} \psi_{b}^{R}(x) \bar{\psi}_{b}^{R}(y) \Gamma_{2} \psi_{a}^{R}(y) \right\rangle_{YM} \\ &= r_{R} \left\langle \operatorname{tr}_{R} \left(D_{yx;\alpha\beta}^{-1} \Gamma_{1}^{\gamma\beta\star} D_{xy;\gamma\delta}^{-1} \Gamma_{2}^{\delta\alpha} \right) \right\rangle_{YM} \end{split}$$

$$\begin{cases} r_R = 1 & R = S/AS \\ r_R = 1/2 & R = Adj \end{cases}$$

ヘロト ヘヨト ヘヨト

3

Outline

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

2

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Correlation Funct

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Equivalence

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large-*N* limit.
- Use invariance under charge conjugation.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Equivalence

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

Expand in Wilson loops.

- Replace the two-index representations.
- Take the large-*N* limit.
- Use invariance under charge conjugation.

$$\frac{1}{N^2} C^R_{\Gamma_1 \Gamma_2}(x, y) = \frac{r_R}{N^2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \langle \operatorname{tr}_R W_{\mathcal{C}} \rangle$$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Equivalence

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

- Expand in Wilson loops.
- Replace the two-index representations.
 - Take the large-*N* limit.
- Use invariance under charge conjugation.

$$\frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \frac{1}{2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \frac{\langle [\operatorname{tr} W_{\mathcal{C}}]^2 \rangle \pm \langle \operatorname{tr} [W_{\mathcal{C}}^2] \rangle}{N^2}$$
$$\frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{\operatorname{Adj}}(x, y) = \frac{1}{2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \frac{\langle |\operatorname{tr} W_{\mathcal{C}}|^2 \rangle - 1}{N^2}$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Equivalence

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large-*N* limit.
- Use invariance under charge conjugation.

$$\frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \frac{1}{2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \frac{\langle [\operatorname{tr} W_{\mathcal{C}}]^2 \rangle \pm \langle \operatorname{tr} [W_{\mathcal{C}}^2] \rangle}{N^2}$$
$$\frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{\operatorname{Adj}}(x, y) = \frac{1}{2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \frac{\langle |\operatorname{tr} W_{\mathcal{C}}|^2 \rangle - 1}{N^2}$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

Equivalence

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large-*N* limit.
- Use invariance under charge conjugation.

$$\frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \frac{1}{2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \frac{\langle \operatorname{tr} W_{\mathcal{C}} \rangle \langle \operatorname{tr} W_{\mathcal{C}} \rangle}{N^2}$$
$$\frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{\operatorname{Adj}}(x, y) = \frac{1}{2} \sum_{\mathcal{C} \supset (x, y)} \alpha_{\mathcal{C}} \frac{\langle \operatorname{tr} W_{\mathcal{C}} \rangle \langle \operatorname{tr} W_{\mathcal{C}}^{\dagger} \rangle}{N^2}$$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

Expand in Wilson loops.

Equivalence

- Replace the two-index representations.
- Take the large-*N* limit.
- Use invariance under charge conjugation.

$$\langle \operatorname{tr} W_{\mathcal{C}}^{\dagger} \rangle = \langle \operatorname{tr} W_{\mathcal{C}} \rangle \qquad \Rightarrow \qquad \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{\operatorname{Adj}}(x, y)$$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

$$\lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{S/AS}(x, y) = \lim_{N \to \infty} \frac{1}{N^2} C_{\Gamma_1 \Gamma_2}^{Adj}(x, y)$$

Expand in Wilson loops.

Equivalence

- Replace the two-index representations.
- Take the large-*N* limit.
- Use invariance under charge conjugation.

A more formal proof of the equivalence exists which does not use the expansion in Wilson loops, but is much more involved

Outline

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation 3

Conclusions and perspectives

Correlation Function

Proof of the quenched equivalence

Large-N extrapolation

The numerical calculation

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

• Simulations performed for N = 2, 3, 4, 6

- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^R$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t-T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
 - Extrapolation to large N

he calculation has been performed using the HiRep code

Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

< 日 > < 回 > < 回 > < 回 > < 回 > <

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^{\mathcal{R}}$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
 - Extrapolation to large N

he calculation has been performed using the HiRep code

. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C^{R}_{\Gamma_{1}\Gamma_{2}}$ determined for $\Gamma_{1} = \Gamma_{2} = \gamma_{5}$ (π channel) and $\Gamma_{1} = \Gamma_{2} = \gamma_{i}$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
 - Extrapolation to large N

he calculation has been performed using the HiRep code

. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^R$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
- Extrapolation to large A

he calculation has been performed using the HiRep code

. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^R$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
- Extrapolation to large N

The calculation has been performed using the HiRep code

L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^R$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$

Extrapolation to large N

The calculation has been performed using the HiRep code

L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^R$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
- Extrapolation to large N

The calculation has been performed using the HiRep code

L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Simulations performed for N = 2, 3, 4, 6
- $\beta(N)$ chosen in such a way that $(aT_c)^{-1} = 5$ ($a \simeq 0.145$ fm)
- Calculations on a 32×16^3 lattice, which corresponds to $L \simeq 2.3$ fm
- $C_{\Gamma_1\Gamma_2}^R$ determined for $\Gamma_1 = \Gamma_2 = \gamma_5$ (π channel) and $\Gamma_1 = \Gamma_2 = \gamma_i$ (ρ channel)
- Mass extracted from the ansatz $C_{\Gamma_1\Gamma_2}^R(t) = A \cosh(m(t T/2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}(m_{\pi}) = cm_{\pi}^2 + m_{\rho}(m_{\pi} = 0)$
- Extrapolation to large N

The calculation has been performed using the HiRep code

(L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

 $m_{
ho}$ vs. m_{π} in SU(3)

Biagio Lucini

Motivations

Correlatior Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives

 m_{ρ} vs. m_{π} in SU(6)

m_{ρ} vs. m_{π} (Antisymmetric)

$m_{ ho}$ vs. m_{π} (Symmetric)

m_{ρ} vs. m_{π} (Adjoint)

Chiral extrapolation of m_{ρ}

Outline

Order of corrections

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives The correlator in the adjoint representation decays with a mass $m_{\rho}^{\rm Adj}$ that can be expressed as a power series in $1/N^2$, while $m_{\rho}^{\rm AS}$ and $m_{\rho}^{\rm S}$ have 1/N corrections that are related:

$$\begin{split} m^{\mathrm{Adj}}_{\rho}(N) &= F\left(\frac{1}{N^2}\right) \ ; \\ m^{\mathrm{S}}_{\rho}(N) &= M\left(\frac{1}{N^2}\right) + \frac{1}{N}\mu\left(\frac{1}{N^2}\right) \ ; \\ m^{\mathrm{AS}}_{\rho}(N) &= M\left(\frac{1}{N^2}\right) - \frac{1}{N}\mu\left(\frac{1}{N^2}\right) \ . \end{split}$$

 $M=\left(m_{\rho}^{\rm S}+m_{\rho}^{\rm AS}\right)/2$ and $\mu=N\left(m_{\rho}^{\rm S}-m_{\rho}^{\rm AS}\right)/2$ can be expressed as a power eries in $1/N^2$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Orientifold planar equivalence is the statement $F(N = \infty) = M(N = \infty)$

Order of corrections

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives The correlator in the adjoint representation decays with a mass $m_{\rho}^{\rm Adj}$ that can be expressed as a power series in $1/N^2$, while $m_{\rho}^{\rm AS}$ and $m_{\rho}^{\rm S}$ have 1/N corrections that are related:

$$\begin{split} m^{\mathrm{Adj}}_{\rho}(N) &= F\left(\frac{1}{N^2}\right) \ ; \\ m^{\mathrm{S}}_{\rho}(N) &= M\left(\frac{1}{N^2}\right) + \frac{1}{N}\mu\left(\frac{1}{N^2}\right) \ ; \\ m^{\mathrm{AS}}_{\rho}(N) &= M\left(\frac{1}{N^2}\right) - \frac{1}{N}\mu\left(\frac{1}{N^2}\right) \ . \end{split}$$

 $M=\left(m_\rho^{\rm S}+m_\rho^{\rm AS}\right)/2$ and $\mu=N\left(m_\rho^{\rm S}-m_\rho^{\rm AS}\right)/2$ can be expressed as a power series in $1/N^2$

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Drientifold planar equivalence is the statement $F(N = \infty) = M(N = \infty)$

Order of corrections

Meson Spectrum

Biagio Lucini

Motivations

Correlation Functions

Proof of the quenched equivalence

The numerical calculation

Large-N extrapolation

Conclusions and perspectives The correlator in the adjoint representation decays with a mass $m_{\rho}^{\rm Adj}$ that can be expressed as a power series in $1/N^2$, while $m_{\rho}^{\rm AS}$ and $m_{\rho}^{\rm S}$ have 1/N corrections that are related:

$$\begin{split} m^{\mathrm{Adj}}_{\rho}(N) &= F\left(\frac{1}{N^2}\right) \ ; \\ m^{\mathrm{S}}_{\rho}(N) &= M\left(\frac{1}{N^2}\right) + \frac{1}{N}\mu\left(\frac{1}{N^2}\right) \ ; \\ m^{\mathrm{AS}}_{\rho}(N) &= M\left(\frac{1}{N^2}\right) - \frac{1}{N}\mu\left(\frac{1}{N^2}\right) \ . \end{split}$$

 $M=\left(m_\rho^{\rm S}+m_\rho^{\rm AS}\right)/2$ and $\mu=N\left(m_\rho^{\rm S}-m_\rho^{\rm AS}\right)/2$ can be expressed as a power series in $1/N^2$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Orientifold planar equivalence is the statement $F(N = \infty) = M(N = \infty)$

Chiral extrapolation of m_{ρ}

Chiral extrapolation of m_{ρ}

Large-*N* fits

 $\begin{array}{c} 0.6 \\ 0.4 \\ 0.2 \\ 0.05 \\ 0 \\ 0.05 \\ 0 \\ 0.05 \\ 0 \\ 0.05 \\ 0 \\ 0.05 \\ 0 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.$

ヘロン 人間 とくほ とくほと

Large-*N* fits

Fit results

Meson Spectrum

- Biagio Lucini
- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculatior

Large-N extrapolation

Conclusions and perspectives

$$\begin{split} m_{\rho}^{\text{Adj}} &= 0.6819(51) - \frac{0.202(67)}{N^2} \ ; \\ m_{\rho}^{\text{S}} &= 0.701(25) + \frac{0.28(12)}{N} - \frac{0.85(24)}{N^2} + \frac{1.4(1.0)}{N^3} \ ; \\ m_{\rho}^{\text{AS}} &= 0.701(25) - \frac{0.28(12)}{N} - \frac{0.85(24)}{N^2} - \frac{1.4(1.0)}{N^3} \ . \end{split}$$

Drientifold planar equivalence verified within 3.5%

ヘロン 人間 とくほ とくほ と

Fit results

Meson Spectrum

- **Biagio Lucini**
- Motivations
- Correlatior Functions
- Proof of the quenched equivalence
- The numerical calculatior

Large-N extrapolation

Conclusions and perspectives

$$\begin{split} m_{\rho}^{\text{Adj}} &= 0.6819(51) - \frac{0.202(67)}{N^2} ; \\ m_{\rho}^{\text{S}} &= 0.701(25) + \frac{0.28(12)}{N} - \frac{0.85(24)}{N^2} + \frac{1.4(1.0)}{N^3} ; \\ m_{\rho}^{\text{AS}} &= 0.701(25) - \frac{0.28(12)}{N} - \frac{0.85(24)}{N^2} - \frac{1.4(1.0)}{N^3} . \end{split}$$

Orientifold planar equivalence verified within 3.5%

ヘロン 人間 とくほ とくほ と

Meson Spectrum

Biagio Lucini

Motivations

- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation

Large-N extrapolation

Conclusions and perspectives

• Check of the orientifold planar equivalence in a simple case

- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
- SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

ヘロト ヘヨト ヘヨト

Current and future developments

Meson Spectrum

Biagio Lucini

Motivations

- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation

Large-N extrapolation

Conclusions and perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
 - SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
 - Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

・ロン ・雪 ・ ・ ヨ ・

Current and future developments

Meson Spectrum

Biagio Lucini

- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
- SU(3) AS is numerically far from the large *N* limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Current and future developments

Meson Spectrum

Biagio Lucini

- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
- SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

- Current and future developments
 - Continuum limit
 - Dynamical fermions

Meson Spectrum

Biagio Lucini

- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Check of the orientifold planar equivalence in a simple case
- $\bullet\,$ Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
- SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

- Current and future developments
 - Continuum limit
 - Dynamical fermions

Meson Spectrum

Biagio Lucini

- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Check of the orientifold planar equivalence in a simple case
- $\bullet\,$ Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
- SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

- Current and future developments
 - Continuum limit
 - Oynamical fermions

Meson Spectrum

Biagio Lucini

- Motivations
- Correlation Functions
- Proof of the quenched equivalence
- The numerical calculation
- Large-N extrapolation
- Conclusions and perspectives

- Check of the orientifold planar equivalence in a simple case
- $\bullet\,$ Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in 1/N
- SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to 1/N³ describe SU(3) within the accuracy of the numerical results

- Current and future developments
 - Continuum limit
 - Dynamical fermions