Meson Spectrum

Biagio Lucini

Motivations
Correlation
Functions
Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions and
perspectives

Orientifold Planar Equivalence: the Quenched Meson Spectrum

Biagio Lucini
Swansea University

(with G. Moraitis, A. Patella, A. Rago)

Lattice 2010
 June 14-19 Villasimius, sardinia, Italy

The XXVIII International symposium on Lattice Field Theory

Orientifold planar equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions and perspectives

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles
A. Armoni, M. Shifman and G. Veneziano. SUSY relics in one-flavor QCD from a new 1/N expansion. Phys. Rev. Lett. 91, 191601, 2003.

Orientifold planar equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the quenched equivalence

The
numerical
calculation
Large- N
extrapolation
Conclusions
and
perspectives

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / \Lambda$ corrections?
A. Armoni, M. Shifman and G. Veneziano. SUSY relics in one-flavor QCD from a new 1/N expansion. Phys. Rev. Lett. 91, 191601, 2003.

Orientifold planar equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / \mathrm{N}$ corrections?
M. Unsal and L. G. Yaffe. (In)validity of large N orientifold equivalence. Phys. Rev. D74:105019, 2006.
A. Armoni, M. Shifman and G. Veneziano. A note on C-parity conservation and the validity of orientifold planar equivalence. Phys.Lett.B647:515-518,2007.

Orientifold planar equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / N$ corrections?

Orientifold planar equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the

- The antisymmetric and the antifundamental representations coincide for $S U(3)$ (but not in general for $S U(N)) \Rightarrow$ different $\operatorname{SU}(N)$ generalizations of QCD.
- In the planar limit, the (anti)symmetric representation is equivalent to another gauge theory with the same number of Majorana fermions in the adjoint representation (in a common sector). In particular, QCD with one massless fermion in the antisymmetric representation is equivalent to $\mathcal{N}=1$ SYM in the planar limit \Rightarrow copy analytical predictions from SUSY to QCD.
- The orientifold planar equivalence holds if and only if the \mathcal{C}-symmetry is not spontaneously broken in both theories \Rightarrow a calculation from first principles is mandatory.
- Assuming that planar equivalence works, how large are the $1 / N$ corrections?

Dynamical fermions difficult to simulate \Rightarrow start with the quenched theory
A. Armoni, B. Lucini, A. Patella and C. Pica. Lattice Study of Planar Equivalence: The Quark Condensate. Phys.Rev.D78:045019,2008.

The Quenched Chiral Condensate

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions and
perspectives

$$
\begin{aligned}
& \frac{\langle\lambda \lambda\rangle_{\mathrm{Adj}}(m=0.012)}{N^{2}}=0.23050(22)-\frac{0.3134(72)}{N^{2}} \\
& \frac{\langle\bar{\psi} \psi\rangle_{\mathrm{AS}}(m=0.012)}{N^{2}}=0.23050(22)-\frac{0.4242(11)}{N}-\frac{0.612(43)}{N^{2}}-\frac{0.811(25)}{N^{3}} \\
& \frac{\langle\bar{\psi} \psi\rangle_{\mathrm{S}}(m=0.012)}{N^{2}}=0.23050(22)+\frac{0.4242(11)}{N}-\frac{0.612(43)}{N^{2}}+\frac{0.811(25)}{N^{3}}
\end{aligned}
$$

A. Armoni, B. Lucini, A. Patella and C. Pica. Lattice Study of Planar Equivalence: The Quark Condensate. Phys.Rev.D78:045019,2008.

Outline

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-
extrapolation
Conclusions
and
perspectives
(1) Correlation Functions

2 Proof of the quenched equivalence

3 The numerical calculation
(4) Large- N extrapolation

Outline

Meson Spectrum

Biagio Lucini

Motivations
(1) Correlation Functions

Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

(2) Proof of the quenched equivalence

(3) The numerical calculation

(4) Large- N extrapolation

Mesonic two-point functions on the lattice

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

Mesonic two-point functions on the lattice

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions
and
perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations

$$
S_{Y M}=-\frac{2 N}{\lambda} \sum_{p} \Re \mathrm{e} \operatorname{tr} U(p)
$$

Mesonic two-point functions on the lattice

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

$$
\begin{aligned}
D_{x y ; \alpha \beta} & =(m+4 r) \delta_{x y} \delta_{\alpha \beta}-K_{x y ; \alpha \beta} \\
K_{x y ; \alpha \beta} & =-\frac{1}{2}\left[\left(r-\gamma_{\mu}\right)_{\alpha \beta} R\left[U_{\mu}(x)\right] \delta_{y, x+\hat{\mu}}+\left(r+\gamma_{\mu}\right)_{\alpha \beta} R\left[U_{\mu}^{\dagger}(y)\right] \delta_{y, x-\hat{\mu}}\right]
\end{aligned}
$$

Mesonic two-point functions on the lattice

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

$$
\begin{aligned}
& \operatorname{tr} \operatorname{Adj}[U]=|\operatorname{tr} U|^{2}-1 \\
& \operatorname{trS} / \operatorname{AS}[U]=\frac{(\operatorname{tr} U)^{2} \pm \operatorname{tr}\left(U^{2}\right)}{2}
\end{aligned}
$$

Mesonic two-point functions on the lattice

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index representations of the gauge group, in the quenched lattice theory.

- Wilson action.
- Wilson Dirac operator.
- The two-index representations.
- The mesonic two-point correlation functions.

$$
\begin{aligned}
C_{\Gamma_{1} \Gamma_{2}}^{R}(x, y) & =r_{R}\left\langle\bar{\psi}_{a}^{R}(x) \Gamma_{1}^{\dagger} \psi_{b}^{R}(x) \bar{\psi}_{b}^{R}(y) \Gamma_{2} \psi_{a}^{R}(y)\right\rangle_{Y M} \\
& =r_{R}\left\langle\operatorname{tr}_{R}\left(D_{y x ; \alpha \beta}^{-1} \Gamma_{1}^{\gamma \beta \star} D_{x y ; \gamma \delta}^{-1} \Gamma_{2}^{\delta \alpha}\right)\right\rangle_{Y M} \\
& \begin{cases}r_{R}=1 & R=\mathrm{S} / \mathrm{AS} \\
r_{R}=1 / 2 & R=\mathrm{Adj}\end{cases}
\end{aligned}
$$

Outline

Meson Spectrum

Correlation
Functions
Proof of the
quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives
2 Proof of the quenched equivalence

(3) The numerical calculation

Heuristic proof of the quenched equivalence

Meson Spectrum

Motivations
Correlation Functions

Proof of the quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations

Heuristic proof of the quenched equivalence

Meson Spectrum

Motivations

Correlation

 FunctionsProof of the quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large $-N$ limit

$$
\frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{R}(x, y)=\frac{r_{R}}{N^{2}} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}}\left\langle\operatorname{tr}_{R} W_{\mathcal{C}}\right\rangle
$$

Heuristic proof of the quenched equivalence

Meson Spectrum

Biagio Lucini

Motivations

Correlation

 FunctionsProof of the quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large- N limit

$$
\begin{aligned}
& \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / \mathrm{AS}}(x, y)=\frac{1}{2} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}} \frac{\left\langle\left[\operatorname{tr} W_{\mathcal{C}}\right]^{2}\right\rangle \pm\left\langle\operatorname{tr}\left[W_{\mathcal{C}}^{2}\right]\right\rangle}{N^{2}} \\
& \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)=\frac{1}{2} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}} \frac{\left.\left.\langle | \operatorname{tr} W_{\mathcal{C}}\right|^{2}\right\rangle-1}{N^{2}}
\end{aligned}
$$

Heuristic proof of the quenched equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the quenched equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large $-N$ limit.

$$
\begin{aligned}
& \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / \mathrm{AS}}(x, y)=\frac{1}{2} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}} \frac{\left\langle\left[\operatorname{tr} W_{\mathcal{C}}\right]^{2}\right\rangle \pm\left\langle\operatorname{tr}\left[W_{\mathcal{C}}^{2}\right]\right\rangle}{N^{2}} \\
& \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)=\frac{1}{2} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}} \frac{\left.\left.\langle | \operatorname{tr} W_{\mathcal{C}}\right|^{2}\right\rangle-1}{N^{2}}
\end{aligned}
$$

Heuristic proof of the quenched equivalence

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large- N limit.
- Use invariance under charge conjugation.

$$
\begin{aligned}
\frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / \mathrm{AS}}(x, y) & =\frac{1}{2} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}} \frac{\left\langle\operatorname{tr} W_{\mathcal{C}}\right\rangle\left\langle\operatorname{tr} W_{\mathcal{C}}\right\rangle}{N^{2}} \\
\frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\operatorname{Adj}}(x, y) & =\frac{1}{2} \sum_{\mathcal{C} \supset(x, y)} \alpha_{\mathcal{C}} \frac{\left\langle\operatorname{tr} W_{\mathcal{C}}\right\rangle\left\langle\operatorname{tr} W_{\mathcal{C}}^{\dagger}\right\rangle}{N^{2}}
\end{aligned}
$$

Heuristic proof of the quenched equivalence

Meson Spectrum

Motivations
Correlation Functions

Proof of the quenched equivalence

The
numerical
calculation
Large-
extrapolation
Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\text {Adj }}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large- N limit.
- Use invariance under charge conjugation.

$$
\left\langle\operatorname{tr} W_{\mathcal{C}}^{\dagger}\right\rangle=\left\langle\operatorname{tr} W_{\mathcal{C}}\right\rangle \quad \Rightarrow \quad \lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{S / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

Heuristic proof of the quenched equivalence

Meson Spectrum

Motivations
Correlation Functions

Proof of the quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions and
perspectives

Equivalence

$$
\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{S} / A S}(x, y)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} C_{\Gamma_{1} \Gamma_{2}}^{\mathrm{Adj}}(x, y)
$$

- Expand in Wilson loops.
- Replace the two-index representations.
- Take the large- N limit.
- Use invariance under charge conjugation.

A more formal proof of the equivalence exists which does not use the expansion in Wilson loops, but is much more involved

Outline

Meson Spectrum

Biagio Lucini

Motivations
(1) Correlation Functions

Correlation
Functions
Proof of the
quenched
equivalence
The
numerical calculation

Large-N
extrapolation
Conclusions
and
perspectives
(3) The numerical calculation

Simulation strategy

Meson Spectrum

- Simulations performed for $N=2,3,4,6$

Correlation

Functions
Proof of the
quenched
equivalence
The
numerical calculation

Large-N
extrapolation
Conclusions
and
perspectives

Simulation strategy

Meson Spectrum

- Simulations performed for $N=2,3,4,6$
- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$

Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large-N extrapolation

Conclusions
and
perspectives

Simulation strategy

Meson Spectrum

- Simulations performed for $N=2,3,4,6$

Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large-N extrapolation

Conclusions
and
perspectives

- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- Calculations on a 32×16^{3} lattice, which corresponds to $L \simeq 2.3 \mathrm{fm}$
- $C_{\Gamma_{1} \Gamma_{2}}^{R}$ determined for $\Gamma_{1}=\Gamma_{2}=\gamma_{5}(\pi$ channel $)$ and $\Gamma_{1}=\Gamma_{2}=\gamma_{i}(\rho$ channel)
- Mass extracted from the ansatz C_{Γ}^{R}

Simulation strategy

Meson Spectrum

- Simulations performed for $N=2,3,4,6$

Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- Calculations on a 32×16^{3} lattice, which corresponds to $L \simeq 2.3 \mathrm{fm}$
- $C_{\Gamma_{1} \Gamma_{2}}^{R}$ determined for $\Gamma_{1}=\Gamma_{2}=\gamma_{5}\left(\pi\right.$ channel) and $\Gamma_{1}=\Gamma_{2}=\gamma_{i}(\rho$ channel)

Large-N

Simulation strategy

Meson Spectrum

- Simulations performed for $N=2,3,4,6$

Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- Calculations on a 32×16^{3} lattice, which corresponds to $L \simeq 2.3 \mathrm{fm}$
- $C_{\Gamma_{1} \Gamma_{2}}^{R}$ determined for $\Gamma_{1}=\Gamma_{2}=\gamma_{5}(\pi$ channel $)$ and $\Gamma_{1}=\Gamma_{2}=\gamma_{i}(\rho$ channel)
- Mass extracted from the ansatz $C_{\Gamma_{1} \Gamma_{2}}^{R}(t)=A \cosh (m(t-T / 2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}\left(m_{\pi}\right)=c m_{\pi}^{2}+m_{\rho}\left(m_{\pi}=0\right)$

Large-N
extrapolation
Conclusions
and
perspectives

Simulation strategy

Meson Spectrum

- Simulations performed for $N=2,3,4,6$

Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large- N
extrapolation
Conclusions and
perspectives

- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- Calculations on a 32×16^{3} lattice, which corresponds to $L \simeq 2.3 \mathrm{fm}$
- $C_{\Gamma_{1} \Gamma_{2}}^{R}$ determined for $\Gamma_{1}=\Gamma_{2}=\gamma_{5}\left(\pi\right.$ channel) and $\Gamma_{1}=\Gamma_{2}=\gamma_{i}(\rho$ channel)
- Mass extracted from the ansatz $C_{\Gamma_{1} \Gamma_{2}}^{R}(t)=A \cosh (m(t-T / 2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}\left(m_{\pi}\right)=c m_{\pi}^{2}+m_{\rho}\left(m_{\pi}=0\right)$
- Extrapolation to large N

The calculation has been performed using the HiRep code

Simulation strategy

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large-N
extrapolation
Conclusions and
perspectives

- Simulations performed for $N=2,3,4,6$
- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- Calculations on a 32×16^{3} lattice, which corresponds to $L \simeq 2.3 \mathrm{fm}$
- $C_{\Gamma_{1} \Gamma_{2}}^{R}$ determined for $\Gamma_{1}=\Gamma_{2}=\gamma_{5}(\pi$ channel $)$ and $\Gamma_{1}=\Gamma_{2}=\gamma_{i}(\rho$ channel)
- Mass extracted from the ansatz $C_{\Gamma_{1} \Gamma_{2}}^{R}(t)=A \cosh (m(t-T / 2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}\left(m_{\pi}\right)=c m_{\pi}^{2}+m_{\rho}\left(m_{\pi}=0\right)$
- Extrapolation to large N

The calculation has been performed using the HiRep code
(L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

Simulation strategy

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large- N
extrapolation
Conclusions and
perspectives

- Simulations performed for $N=2,3,4,6$
- $\beta(N)$ chosen in such a way that $\left(a T_{c}\right)^{-1}=5(a \simeq 0.145 \mathrm{fm})$
- Calculations on a 32×16^{3} lattice, which corresponds to $L \simeq 2.3 \mathrm{fm}$
- $C_{\Gamma_{1} \Gamma_{2}}^{R}$ determined for $\Gamma_{1}=\Gamma_{2}=\gamma_{5}(\pi$ channel $)$ and $\Gamma_{1}=\Gamma_{2}=\gamma_{i}(\rho$ channel)
- Mass extracted from the ansatz $C_{\Gamma_{1} \Gamma_{2}}^{R}(t)=A \cosh (m(t-T / 2))$
- Chiral extrapolation of m_{ρ} using $m_{\rho}\left(m_{\pi}\right)=c m_{\pi}^{2}+m_{\rho}\left(m_{\pi}=0\right)$
- Extrapolation to large N

The calculation has been performed using the HiRep code
(L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)

m_{ρ} VS. m_{π} in SU(3)

Meson Spectrum

m_{ρ} VS. m_{π} in SU(6)

Meson Spectrum

m_{ρ} vS. m_{π} (Antisymmetric)

Meson Spectrum

m_{ρ} vS. m_{π} (Symmetric)

Meson Spectrum

m_{ρ} VS. m_{π} (Adjoint)

Meson Spectrum

Chiral extrapolation of m_{ρ}

Meson Spectrum

Biagio Lucini

Motivations
Correlation
Functions
Proof of the
quenched
equivalence
The
numerical calculation

Large-N
extrapolation
Conclusions
and
perspectives

Outline

Meson Spectrum

Biagio Lucini

Motivations
(1) Correlation Functions

Correlation
Functions
Proof of the
quenched
equivalence
The
numerical
caiculation
Large- N extrapolation

Conclusions
and
perspectives
(4) Large- N extrapolation

Order of corrections

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched equivalence

The
numerical
calculation
Large-N extrapolation

Conclusions and
perspectives

The correlator in the adjoint representation decays with a mass $m_{\rho}^{\text {Adj }}$ that can be expressed as a power series in $1 / N^{2}$, while m_{ρ}^{AS} and m_{ρ}^{S} have $1 / N$ corrections that are related:

$$
\begin{aligned}
m_{\rho}^{\mathrm{Adj}}(N) & =F\left(\frac{1}{N^{2}}\right) \\
m_{\rho}^{\mathrm{S}}(N) & =M\left(\frac{1}{N^{2}}\right)+\frac{1}{N} \mu\left(\frac{1}{N^{2}}\right) \\
m_{\rho}^{\mathrm{AS}}(N) & =M\left(\frac{1}{N^{2}}\right)-\frac{1}{N} \mu\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

$M=\left(m_{\rho}^{\mathrm{S}}+m_{\rho}^{\mathrm{AS}}\right) / 2$ and $\mu=N\left(m_{\rho}^{\mathrm{S}}-m_{\rho}^{\mathrm{AS}}\right) / 2$ can be expressed as a power series in $1 / N^{2}$

Orientifold planar equivalence is the statement $F(N=\infty)=M(N=\infty)$

Order of corrections

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N extrapolation

Conclusions and perspectives

The correlator in the adjoint representation decays with a mass $m_{\rho}^{\text {Adj }}$ that can be expressed as a power series in $1 / N^{2}$, while m_{ρ}^{AS} and m_{ρ}^{S} have $1 / N$ corrections that are related:

$$
\begin{gathered}
m_{\rho}^{\mathrm{Adj}}(N)=F\left(\frac{1}{N^{2}}\right) ; \\
m_{\rho}^{\mathrm{S}}(N)=M\left(\frac{1}{N^{2}}\right)+\frac{1}{N} \mu\left(\frac{1}{N^{2}}\right) ; \\
m_{\rho}^{\mathrm{AS}}(N)=M\left(\frac{1}{N^{2}}\right)-\frac{1}{N} \mu\left(\frac{1}{N^{2}}\right) . \\
M=\left(m_{\rho}^{\mathrm{S}}+m_{\rho}^{\mathrm{AS}}\right) / 2 \text { and } \mu=N\left(m_{\rho}^{\mathrm{S}}-m_{\rho}^{\mathrm{AS}}\right) / 2 \text { can be expressed as a power } \\
\text { series in } 1 / N^{2}
\end{gathered}
$$

Orientifold planar equivalence is the statement $F(N=\infty)=M(N=\infty)$

Order of corrections

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the quenched equivalence

The
numerical
calculation
Large- N extrapolation

Conclusions and perspectives

The correlator in the adjoint representation decays with a mass $m_{\rho}^{\text {Adj }}$ that can be expressed as a power series in $1 / N^{2}$, while m_{ρ}^{AS} and m_{ρ}^{S} have $1 / N$ corrections that are related:

$$
\begin{gathered}
m_{\rho}^{\mathrm{Adj}}(N)=F\left(\frac{1}{N^{2}}\right) ; \\
m_{\rho}^{\mathrm{S}}(N)=M\left(\frac{1}{N^{2}}\right)+\frac{1}{N} \mu\left(\frac{1}{N^{2}}\right) ; \\
m_{\rho}^{\mathrm{AS}}(N)=M\left(\frac{1}{N^{2}}\right)-\frac{1}{N} \mu\left(\frac{1}{N^{2}}\right) . \\
M=\left(m_{\rho}^{\mathrm{S}}+m_{\rho}^{\mathrm{AS}}\right) / 2 \text { and } \mu=N\left(m_{\rho}^{\mathrm{S}}-m_{\rho}^{\mathrm{AS}}\right) / 2 \text { can be expressed as a power } \\
\text { series in } 1 / N^{2}
\end{gathered}
$$

Orientifold planar equivalence is the statement $F(N=\infty)=M(N=\infty)$

Chiral extrapolation of m_{ρ}

Meson Spectrum

Biagio Lucini

Motivations
Correlation
Functions
Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions
and
perspectives

Chiral extrapolation of m_{ρ}

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N extrapolation

Conclusions
and
perspectives

Large- N fits

Meson

 Spectrum

Large- N fits

Meson

 Spectrum
Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large-N

 extrapolationConclusions and
perspectives

Fit results

Meson Spectrum

$$
\begin{aligned}
m_{\rho}^{\mathrm{Adj}} & =0.6819(51)-\frac{0.202(67)}{N^{2}} \\
m_{\rho}^{\mathrm{S}} & =0.701(25)+\frac{0.28(12)}{N}-\frac{0.85(24)}{N^{2}}+\frac{1.4(1.0)}{N^{3}} \\
m_{\rho}^{\mathrm{AS}} & =0.701(25)-\frac{0.28(12)}{N}-\frac{0.85(24)}{N^{2}}-\frac{1.4(1.0)}{N^{3}}
\end{aligned}
$$

Fit results

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical calculation

Large- N extrapolation
Conclusions and
perspectives

$$
\begin{aligned}
m_{\rho}^{\mathrm{Adj}} & =0.6819(51)-\frac{0.202(67)}{N^{2}} \\
m_{\rho}^{\mathrm{S}} & =0.701(25)+\frac{0.28(12)}{N}-\frac{0.85(24)}{N^{2}}+\frac{1.4(1.0)}{N^{3}} \\
m_{\rho}^{\mathrm{AS}} & =0.701(25)-\frac{0.28(12)}{N}-\frac{0.85(24)}{N^{2}}-\frac{1.4(1.0)}{N^{3}}
\end{aligned}
$$

Orientifold planar equivalence verified within 3.5\%

Conclusions and perspectives

Meson Spectrum

Motivations
Correlation Functions

Proof of the
quenched equivalence

The
numerical
calculation
Large-N
extrapolation
Conclusions
and
perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / \mathrm{N}$
- $\operatorname{SU}(3)$ AS is numerically far from the large N limit of the adjoint

Conclusions and perspectives

Meson Spectrum

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / N$
- $\mathrm{SU}(3) \mathrm{AS}$ is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections un to $1 / N^{3}$ describe SU(3) within the accuracy of the numerical results

Conclusions and perspectives

Meson Spectrum

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / N$
- $\operatorname{SU}(3)$ AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to $1 / N^{3}$ describe $\operatorname{SU}(3)$ within the accuracy of the numerical results
- Current and future developments

Conclusions and perspectives

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions
and
perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / N$
- SU(3) AS is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to $1 / N^{3}$ describe $\mathrm{SU}(3)$ within the accuracy of the numerical results
- Current and future developments

Conclusions and perspectives

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions
and
perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / N$
- $\operatorname{SU}(3) \mathrm{AS}$ is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to $1 / N^{3}$ describe $\mathrm{SU}(3)$ within the accuracy of the numerical results
- Current and future developments

Conclusions and perspectives

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large- N
extrapolation
Conclusions and
perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / N$
- $\operatorname{SU}(3) \mathrm{AS}$ is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to $1 / N^{3}$ describe $\mathrm{SU}(3)$ within the accuracy of the numerical results
- Current and future developments
- Continuum limit
- Dynamical fermions

Conclusions and perspectives

Meson Spectrum

Biagio Lucini

Motivations
Correlation Functions

Proof of the
quenched
equivalence
The
numerical
calculation
Large-N
extrapolation
Conclusions and
perspectives

- Check of the orientifold planar equivalence in a simple case
- Computation of the ρ and π masses for two-index irredicible representations and evaluation of the corrections in $1 / N$
- $\operatorname{SU}(3) \mathrm{AS}$ is numerically far from the large N limit of the adjoint representation, but it is obtainable from it with a controlled power expansion
- Corrections up to $1 / N^{3}$ describe $\mathrm{SU}(3)$ within the accuracy of the numerical results
- Current and future developments
- Continuum limit
- Dynamical fermions

