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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?

A. Armoni, M. Shifman and G. Veneziano. SUSY relics in one-flavor QCD from a
new 1/N expansion. Phys. Rev. Lett. 91, 191601, 2003.
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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?

M. Unsal and L. G. Yaffe. (In)validity of large N orientifold equivalence. Phys. Rev.
D74:105019, 2006.

A. Armoni, M. Shifman and G. Veneziano. A note on C-parity conservation and the
validity of orientifold planar equivalence. Phys.Lett.B647:515-518,2007.
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Orientifold planar equivalence

The antisymmetric and the antifundamental representations coincide for
SU(3) (but not in general for SU(N)) ⇒ different SU(N) generalizations of
QCD.

In the planar limit, the (anti)symmetric representation is equivalent to
another gauge theory with the same number of Majorana fermions in the
adjoint representation (in a common sector). In particular, QCD with one
massless fermion in the antisymmetric representation is equivalent to N = 1
SYM in the planar limit ⇒ copy analytical predictions from SUSY to QCD.

The orientifold planar equivalence holds if and only if the C-symmetry is not
spontaneously broken in both theories ⇒ a calculation from first principles
is mandatory.

Assuming that planar equivalence works, how large are the 1/N
corrections?

Dynamical fermions difficult to simulate ⇒ start with the quenched theory

A. Armoni, B. Lucini, A. Patella and C. Pica. Lattice Study of Planar Equiva-
lence: The Quark Condensate. Phys.Rev.D78:045019,2008.
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The Quenched Chiral Condensate

〈λλ〉Adj(m = 0.012)
N2

= 0.23050(22)−
0.3134(72)

N2

〈ψ̄ψ〉AS(m = 0.012)
N2

= 0.23050(22)−
0.4242(11)

N
−

0.612(43)
N2

−
0.811(25)

N3

〈ψ̄ψ〉S(m = 0.012)
N2

= 0.23050(22) +
0.4242(11)

N
−

0.612(43)
N2

+
0.811(25)

N3

A. Armoni, B. Lucini, A. Patella and C. Pica. Lattice Study of Planar Equivalence:
The Quark Condensate. Phys.Rev.D78:045019,2008.
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Mesonic two-point functions on the lattice

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Wilson Dirac operator.

The two-index representations.

The mesonic two-point correlation functions.
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Mesonic two-point functions on the lattice

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Wilson Dirac operator.

The two-index representations.

The mesonic two-point correlation functions.

SYM = −
2N
λ

X
p

<e tr U(p)
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Mesonic two-point functions on the lattice

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Wilson Dirac operator.

The two-index representations.

The mesonic two-point correlation functions.

Dxy;αβ = (m + 4r)δxyδαβ − Kxy;αβ

Kxy;αβ = −
1
2

h
(r − γµ)αβ R

h
Uµ(x)

i
δy,x+µ̂ + (r + γµ)αβ R

h
U†µ(y)

i
δy,x−µ̂

i
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Mesonic two-point functions on the lattice

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Wilson Dirac operator.

The two-index representations.

The mesonic two-point correlation functions.

tr Adj[U] = | tr U|2 − 1

tr S/AS[U] =
(tr U)2 ± tr(U2)

2
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Mesonic two-point functions on the lattice

Aim

To measure the mesonic two-point functions with Wilson fermions in the two-index
representations of the gauge group, in the quenched lattice theory.

Wilson action.

Wilson Dirac operator.

The two-index representations.

The mesonic two-point correlation functions.

CR
Γ1Γ2

(x, y) = rR

D
ψ̄R

a (x)Γ†1ψ
R
b (x)ψ̄R

b (y)Γ2ψ
R
a (y)

E
YM

= rR

D
trR

“
D−1

yx;αβΓγβ?
1 D−1

xy;γδΓδα
2

”E
YM

rR = 1 R = S/AS
rR = 1/2 R = Adj
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Heuristic proof of the quenched equivalence

Equivalence

lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)

Expand in Wilson loops.

Replace the two-index representations.

Take the large-N limit.

Use invariance under charge conjugation.
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Heuristic proof of the quenched equivalence

Equivalence

lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)

Expand in Wilson loops.

Replace the two-index representations.

Take the large-N limit.

Use invariance under charge conjugation.

1
N2

CR
Γ1Γ2

(x, y) =
rR

N2

X
C⊃(x,y)

αC 〈 trR WC 〉
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Heuristic proof of the quenched equivalence

Equivalence

lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)

Expand in Wilson loops.

Replace the two-index representations.

Take the large-N limit.

Use invariance under charge conjugation.

1
N2

CS/AS
Γ1Γ2

(x, y) =
1
2

X
C⊃(x,y)

αC
〈[tr WC ]2〉 ± 〈tr[W2

C ]〉
N2

1
N2

CAdj
Γ1Γ2

(x, y) =
1
2

X
C⊃(x,y)

αC
〈| tr WC |2〉 − 1

N2
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Equivalence

lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)

Expand in Wilson loops.

Replace the two-index representations.

Take the large-N limit.

Use invariance under charge conjugation.

1
N2

CS/AS
Γ1Γ2

(x, y) =
1
2

X
C⊃(x,y)

αC
〈tr WC〉〈tr WC〉

N2

1
N2

CAdj
Γ1Γ2

(x, y) =
1
2

X
C⊃(x,y)

αC
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N2
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Heuristic proof of the quenched equivalence

Equivalence

lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)

Expand in Wilson loops.

Replace the two-index representations.

Take the large-N limit.

Use invariance under charge conjugation.

〈tr W†C〉 = 〈tr WC〉 ⇒ lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)
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Heuristic proof of the quenched equivalence

Equivalence

lim
N→∞

1
N2

CS/AS
Γ1Γ2

(x, y) = lim
N→∞

1
N2

CAdj
Γ1Γ2

(x, y)

Expand in Wilson loops.

Replace the two-index representations.

Take the large-N limit.

Use invariance under charge conjugation.

A more formal proof of the equivalence exists which does not use the expansion in
Wilson loops, but is much more involved
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Simulation strategy

Simulations performed for N = 2, 3, 4, 6

β(N) chosen in such a way that (aTc)−1 = 5 (a ' 0.145 fm)

Calculations on a 32× 163 lattice, which corresponds to L ' 2.3 fm

CR
Γ1Γ2

determined for Γ1 = Γ2 = γ5 (π channel) and Γ1 = Γ2 = γi (ρ
channel)

Mass extracted from the ansatz CR
Γ1Γ2

(t) = A cosh (m(t − T/2))

Chiral extrapolation of mρ using mρ(mπ) = cm2
π + mρ(mπ = 0)

Extrapolation to large N

The calculation has been performed using the HiRep code

(L. Del Debbio, A. Patella, C. Pica, arXiv:0805.2058)
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mρ vs. mπ in SU(3)
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mρ vs. mπ in SU(6)
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Chiral extrapolation of mρ

0 0.05 0.1 0.15 0.2 0.25

1/N2

0

0.2

0.4

0.6

0.8

1

m
ρ

Adj
S
A

Biagio Lucini Meson Spectrum



Meson
Spectrum

Biagio Lucini

Motivations

Correlation
Functions

Proof of the
quenched
equivalence

The
numerical
calculation

Large-N
extrapolation

Conclusions
and
perspectives

Outline

1 Correlation Functions

2 Proof of the quenched equivalence

3 The numerical calculation

4 Large-N extrapolation

Biagio Lucini Meson Spectrum



Meson
Spectrum

Biagio Lucini

Motivations

Correlation
Functions

Proof of the
quenched
equivalence

The
numerical
calculation

Large-N
extrapolation

Conclusions
and
perspectives

Order of corrections

The correlator in the adjoint representation decays with a mass mAdj
ρ that can be

expressed as a power series in 1/N2, while mAS
ρ and mS

ρ have 1/N corrections that
are related:

mAdj
ρ (N) = F

„
1

N2

«
;

mS
ρ(N) = M

„
1

N2

«
+

1
N
µ

„
1

N2

«
;

mAS
ρ (N) = M

„
1

N2

«
−

1
N
µ

„
1

N2

«
.

M =
`
mS

ρ + mAS
ρ

´
/2 and µ = N

`
mS

ρ − mAS
ρ

´
/2 can be expressed as a power

series in 1/N2

Orientifold planar equivalence is the statement F(N = ∞) = M(N = ∞)
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Chiral extrapolation of mρ
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Large-N fits
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Fit results

mAdj
ρ = 0.6819(51)−

0.202(67)
N2

;

mS
ρ = 0.701(25) +

0.28(12)
N

−
0.85(24)

N2
+

1.4(1.0)
N3

;

mAS
ρ = 0.701(25)−

0.28(12)
N

−
0.85(24)

N2
−

1.4(1.0)
N3

.

Orientifold planar equivalence verified within 3.5%

Biagio Lucini Meson Spectrum



Meson
Spectrum

Biagio Lucini

Motivations

Correlation
Functions

Proof of the
quenched
equivalence

The
numerical
calculation

Large-N
extrapolation

Conclusions
and
perspectives

Fit results

mAdj
ρ = 0.6819(51)−

0.202(67)
N2

;

mS
ρ = 0.701(25) +

0.28(12)
N

−
0.85(24)

N2
+

1.4(1.0)
N3

;

mAS
ρ = 0.701(25)−

0.28(12)
N

−
0.85(24)

N2
−

1.4(1.0)
N3

.

Orientifold planar equivalence verified within 3.5%

Biagio Lucini Meson Spectrum



Meson
Spectrum

Biagio Lucini

Motivations

Correlation
Functions

Proof of the
quenched
equivalence

The
numerical
calculation

Large-N
extrapolation

Conclusions
and
perspectives

Conclusions and perspectives

Check of the orientifold planar equivalence in a simple case

Computation of the ρ and π masses for two-index irredicible representations
and evaluation of the corrections in 1/N

SU(3) AS is numerically far from the large N limit of the adjoint
representation, but it is obtainable from it with a controlled power expansion

Corrections up to 1/N3 describe SU(3) within the accuracy of the numerical
results

Current and future developments
Continuum limit
Dynamical fermions
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