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CENTER SYMMETRY OF GLUODYNAMICS

@ Local Polyakov loop:

Ny—1

L(X) = Tr[ I1 u4(>z,t)}

t=0

SU(3) gauge theory: Center elements zc {1,e?™/3 e~2m/3}

@ Center transformation: Acts on temporal links at time slice t = tg

U4()?, to) —Z U4()?, to)

(]

Action and gauge measue are invariant

(]

Polyakov loop transforms non-trivially under a center transformation

L(X) — z L(X)

(7

Non-vanishing (L(X)) signals spontaneous breaking of center symmetry
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INCLUSION OF DYNAMICAL FERMIONS

@ When quarks are included the fermion determinant acts as an additional
weight factor

@ Fermions play the role of an external magnetic field which break the
center symmetry explicitly

@ Although the Polyakov loop P is no true order parameter anymore it
signals the crossover to deconfinement
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SCATTER PLOTS OF THE POLYAKOV LOOP

@ In pure gauge theory:
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SVETITSKY-YAFFE CONJECTURE (1981):

@ At T, the critical behavior of SU(N) gauge theory in d 4+ 1 dimensions
can be described by a d - dimensional spin system with a Zy - invariant
effective action

@ The spins are related to the local loops L(X)

@ In spin systems one can define clusters of parallel spins (e.g.
Fortuin-Kasteleyn clusters in Ising systems)

@ At T, these clusters start to percolate

@ Can we identify characteristic properties of such clusters directly in
QCD?

@ Here we focus on clusters with coherent phases of the Polyakov loop
and their percolation properties near T..
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SETTINGS AND GOAL IN OUR ANALYSIS

@ We study clusters and critical percolation directly in quenched and
dynamical SU(3) gauge theory

@ For that purpose we analyze properties of the local loops L(X)

@ Technicalities — Quenched case:

Lischer-Weisz gauge action

Lattice sizes: 20% x 6 ... 40% x 12
Temperatures: T € [0.63T., 1.32T]
arXiv:1004.2200

vV vy VvYyy

@ Technicalities — Dynamical case:

Symanzik improved gauge and stout-link improved staggered action
2 + 1 flavors with physical quark masses

Lattice sizes: 18° x 6,36° x 6,243 x 8

Temperatures: T € [50 MeV ..., 1000 MeV |

Phys. Lett. B643 (2006) 46, JHEP 0906:088 (2009)

vV vy vy VvYyy
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THE LOCAL POLYAKOV LOOP L(X)

@ For the analysis of local properties of L(X) we define:

L(X) = p(x)e'?)

@ We analyze properties of the modulus p(X) and the phase ((X)
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PROPERTIES OF THE LOCAL POLYAKOV LooP

MoDULUS p(X):
(full curve = Haar measure distribution)
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Ve -
PHASE ¢(X):

(full curve = Haar measure distribution)

quenched, 40° x 6 lattice dynamical, 36° x 6 lattice
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CENTER SECTORS ACROSS THE PHASE TRANSITION

guenched
Abundance of lattice sites in center sectors

dynamical
Abundance of lattice sites in center sectors
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CONSTRUCTION OF CLUSTERS

@ Assign the sector numbers —1, 0, 1 to the three phases of the Polyakov
loop

@ Neighboring sites with same sector number are put in the same cluster

@ In 3 dimensions the critical site percolation probability p. = 0.3116

@ Below T, thus we always find percolating clusters

@ |dea: Introduce a cut for sites far from center elements

L cut cut

T s T s B T s o
-30 -20 -10 00 1.0 20 3.0

@ A similar cut is necessary for percolating clusters in spin systems
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CLUSTER AND PERCOLATION PROPERTIES OF CENTER DOMAINS

@ We determine the physical diameter d of the cluster
@ The diameter clearly depends on the value of the cut parameter

@ For a given value of d (e.g. 0.5 fm, 0.8 fm, 1.0 fm) we compare the cut
parameters on lattices with different lattice spacing a

@ The number of lattice points which are not cut and thus are available for
the clusters is
100% — cut%
A= —m
Nc
@ A scales linearly to a value very close to the critical percolation density
pc = 0.3116
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CLUSTER AND PERCOLATION PROPERTIES OF CENTER DOMAINS
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LARGEST CLUSTER

quenched dynamical

Size of largest cluster normalized with the volume  Size of largest cluster normalized with the volume
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PERCOLATION PROBABILITY
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SUMMARY AND OUTLOOK

@ We analyze the behavior of local Polyakov loops L(X)
@ We find that below T, they are distributed according to Haar measure

@ The phases always have preferred values near the center angles
0, +i27/3

@ The phases form spatially localized clusters
@ The clusters can be shown to have a continuum limit

@ For pure gauge theory the deconfinement transition can be
characterized by the onset of percolation of these clusters

@ For the full theory, due to the crossover nature of the transition, this
cannot be expected a priori

@ Related analysis of this behavior is in progress
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