$\mathrm{B}_{\mathrm{s}}^{0}$ and B^{0} mixing in the Standard Model and beyond

...a progress report

Chris Bouchard, University of Illinois

FNAL Lattice - MILC Collaboration

Lattice 2010

Outline

- Introduction
- motivation
- role of LQCD
- Calculation
- mixing operators
- generating data
- fitting
- Initial results
- Outlook

Motivation

- mixing sensitive to NP
— SM contributions suppressed: loop, GIM, Cabibbo
- hints of NP
- experimental precision in determining $\left|\mathrm{V}_{\mathrm{td}}\right| \&\left|\mathrm{~V}_{\mathrm{ts}}\right|$

Mixing sensitive to NP

SM suppression: Ioop, GIM, Cabibbo

Mixing sensitive to NP

SM suppression: loop, GIM, Cabibbo

...opens door for BSM contributions

some possibilities [Buras, arXiv:0910.1032, hep-ph]:

- SUSY flavor models: ? \supseteq squarks, gluinos, ...
- Little Higgs (extended weak gauge group): ? $\supseteq \mathrm{W}_{\mathrm{H}}, \mathrm{Z}_{\mathrm{H}}, \ldots$
- Randall-Sundrum (warped extra dims): ? \supseteq KK particles, ...

Motivation

- mixing sensitive to NP
- hints of NP
— definitions
- experimental precision in determining $\left|\mathrm{V}_{\mathrm{td}}\right| \&\left|\mathrm{~V}_{\mathrm{ts}}\right|$

Definitions

- $\Delta \mathrm{M}=\mathrm{M}_{\mathrm{H}}-\mathrm{M}_{\mathrm{L}}$
- $\Delta \Gamma=\Gamma_{L}-\Gamma_{H}$
- $\phi_{\mathrm{s}}^{J / \varphi \phi}\left(=-2 \beta_{\mathrm{s}}\right)$:

Motivation

- mixing sensitive to NP
- hints of NP
- definitions
- UT tension: 2-3б [Laiho, Lunghi, Van de Water arXiv:0910.2928v2, hep-ph] [Lunghi and Soni, arXiv:0803.4340, hep-ph]
- experimental precision in determining $\left|\mathrm{V}_{\mathrm{td}}\right| \&\left|\mathrm{~V}_{\mathrm{ts}}\right|$

UT tension

[Laiho, Lunghi and Van de Water, arXiv:0910.2928v2, hep-ph]

$\rightarrow(2-3) \sigma$ tension

Motivation

- mixing sensitive to NP
- hints of NP
- definitions
- UT tension: 2-3 \quad [Laiho, Lunghi, Van de Water arXiv:0910.2928v2, hep-ph] [Lunghi and Soni, arXiv:0803.4340, hep-ph]
- B_{S} mixing: UTfit 3 $\mathbf{3 \sigma}$ [arXiv:0803.0659, hep-ph]
- experimental precision in determining $\left|\mathrm{V}_{\mathrm{td}}\right| \&\left|\mathrm{~V}_{\mathrm{ts}}\right|$

UTfit: B_{s} mixing

- model independent NP analysis: $\frac{\left\langle B_{s}\right| H_{f f l}^{\text {full }}\left|\overline{B_{s}}\right\rangle}{\left\langle B_{s}\right| H_{\text {eff }}^{\mathrm{Sf}}|\overline{\bar{s}}\rangle}=1+\frac{A_{s}^{\mathrm{NP}}}{A_{s}^{S \mathrm{M}}} e^{2 i \phi_{s}^{\mathrm{NP}}}$
- measured quantities ($\operatorname{expt}_{\mathrm{i}}$)

$$
-\Delta m_{s,}, A_{s L}^{s}, A_{s L}^{\mu \mu} \tau\left(B_{s}\right), \Delta \Gamma_{s^{\prime}} \phi_{s}
$$

- related to $A_{s}^{N P} / A_{s}^{S M}, \phi_{s}^{N P}$ and $S M / Q C D$ input

$$
\operatorname{expt}_{i}=f n_{i}\left(A_{s}^{N P} / A_{s}^{S M}, \phi_{s}^{N P}, S M / Q C D \text { input }\right)
$$

- $A_{s}^{N P} / A_{s}^{S M}, \phi_{s}^{N P}$ simultaneously fit to expt ${ }_{i}, S M / Q C D$ input

UTfit: B_{s} mixing

[Utfit Collaboration, arXiv:0803.0659, hep-ph]

Motivation

- mixing sensitive to NP
- hints of NP
- definitions
- UT tension: 2-3б [Laiho, Lunghi, Van de Water arXiv:0910.2928v2, hep-ph] [Lunghi and Soni, arXiv:0803.4340, hep-ph]
$-B_{s}$ mixing:

UTfit 3o
$\left(\begin{array}{lc}D \varnothing & 3.2 \sigma \\ C D F & 0.8 \sigma\end{array}\right.$
[arXiv:0803.0659, hep-ph]
[arXiv:1005.2757, hep-ex] $]$
[FPCP 25 May 2010]

- experimental precision in determining $\left|\mathrm{V}_{\mathrm{td}}\right|$ \& $\left|\mathrm{V}_{\mathrm{ts}}\right|$

DØ / CDF: B mixing

[G. Brooijmans (DØ), FPCP 2010]

[L. Oakes (CDF), FPCP 2010]

$$
A_{S L}^{S}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

$D \emptyset / C D F: B_{s}$ mixing

3.2σ

0.8σ

$$
\text { note: } \phi_{\mathrm{s}}=-2 \beta_{\mathrm{s}}
$$

Motivation

- mixing sensitive to NP
- hints of NP
- experimental precision in determining $\left|\mathrm{V}_{\mathrm{td}}\right| \&\left|\mathrm{~V}_{\mathrm{ts}}\right|$

$$
\begin{aligned}
& \Delta m_{d}=0.507 \pm 0.003 \text { (stat) } \pm 0.003 \text { (stat) } \mathrm{ps}^{-1}<1 \% \\
& \Delta m_{s}=17.77 \pm 0.10 \text { (stat) } \pm 0.07 \text { (syst) } \mathrm{ps}^{-1}<0.7 \%
\end{aligned}
$$

Role of LQCD

$$
\begin{array}{ll}
\Delta m_{d}=0.507 \pm 0.003 \text { (stat) } \pm 0.003 \text { (syst) ps }{ }^{-1} & \text { [PDG, PL B667, } 1 \text { (2008)] } \\
\Delta m_{s}=17.77 \pm 0.10 \text { (stat) } \pm 0.07 \text { (syst) ps }{ }^{-1} & {[\text { CDF, PRL } 97,242003 \text { (2006)] }}
\end{array}
$$

expt

$\mathrm{SM}: \Delta m_{q}=\underbrace{\left(\frac{G_{F}^{2} M_{W}^{2} S_{0}}{4 \pi^{2} M_{B_{q}}}\right) \eta_{B}(\mu)}_{\text {know } / \text { calc in PT }} \underbrace{\left|V_{t b} V_{t q}^{*}\right|^{2}}_{\text {want }} \overbrace{\text { LQCD }}^{\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}(\mu)\left|B_{q}^{0}\right\rangle}$

Role of LQCD

$\Delta m_{d}=0.507 \pm 0.003$ (stat) ± 0.003 (syst) ps^{-1}
$\Delta m_{s}=17.77 \pm 0.10$ (stat) ± 0.07 (syst) ps ${ }^{-1}$
$\mathrm{SM}+\mathrm{BSM}: \Delta m_{q}=\sum_{i} C_{\text {model dep }}^{C_{i}(\mu)} \underbrace{\left\langle\overline{B_{q}^{0}} \mathcal{O}_{i}(\mu) \mid B_{q}^{0}\right\rangle}_{\text {LacD }}$

Role of LQCD

$$
\begin{aligned}
& \Delta m_{d}=0.507 \pm 0.003 \text { (stat) } \pm 0.003 \text { (syst) } \mathrm{ps}^{-1} \\
& \Delta m_{s}=17.77 \pm 0.10 \text { (stat) } \pm 0.07 \text { (syst) } \mathrm{ps}^{-1}
\end{aligned}
$$

[PDG, PL B667, 1 (2008)]
[CDF, PRL 97, 242003 (2006)]
$\mathrm{SM}+\mathrm{BSM}:{ }^{\Delta} \Delta m_{q}=\sum_{i} \overbrace{\text { model dep }}^{C_{i}(\mu)} \overbrace{\text { LQCD }}^{\left\langle\overline{B_{q}^{0}}\right| \mathcal{O}_{i}(\mu)\left|B_{q}^{0}\right\rangle}$
$\Delta \Gamma_{\mathrm{s}}\left(\Delta \Gamma_{\mathrm{d}} \approx 0\right)$ can also be expressed as a function of $\left\langle\overline{\bar{B}_{q}^{0}}\right| \mathcal{O}_{i}(\mu)\left|B_{q}^{0}\right\rangle$, though experimental errors are larger.

$$
\left|\Delta \Gamma_{s}\right|=0.076_{-0.063}^{+0.059}(\text { stat }) \pm 0.006 \text { (syst.) ps }{ }^{-1} \quad \text { [CDF, PRL 100, 121803, 2008] }
$$

Outline

- Introduction

- motivation

- role of LQCD
- Calculation
- mixing operators
- generating data
- fitting
- Initial results
- Summary

Mixing operators: SUSY basis

- 5 independent operators form "SUSY" basis

$$
\begin{array}{ll}
\mathcal{O}_{1}=\left(\bar{b}^{\alpha} \gamma_{\mu} L q^{\alpha}\right)\left(\bar{b}^{\beta} \gamma_{\mu} L q^{\beta}\right) & \mathcal{O}_{4}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} R q^{\beta}\right) \\
\mathcal{O}_{2}=\left(\bar{b}^{\alpha} L q^{\alpha}\right)\left(\bar{b}^{\beta} L q^{\beta}\right) & \mathcal{O}_{5}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} R q^{\alpha}\right) \\
\mathcal{O}_{3}=\left(\bar{b}^{\alpha} L q^{\beta}\right)\left(\bar{b}^{\beta} L q^{\alpha}\right) &
\end{array}
$$

- investigating: 15 redundant operators (Fierz and parity)

Mixing operators: current status

- SM mixing parameters known to ~(3-4)\%
- 2+1 sea quarks
[Gamiz et al., HPQCD, PRD80, 014503 (2009)]
[Evans et al., FNAL Lattice, PoS (LAT2009) 245]
[Witzel et al., RBC/UKQCD, PoS (LAT2009) 243]
- BSM mixing parameters known to $\sim 10 \%$
- 2 sea quarks (4 of 5 ME's; static limit of HQET)
[Gimenez and Reyes, arXiv:0010048v3, hep-lat (2000)]
- quenched
[Becirevic et al., arXiv:0110091v1, hep-lat (2001)]

Generating data: gauge config's

MILC

- 2+1 asqtad sea quarks
- improved gluons
$\mathcal{O}\left(a^{4}, \alpha_{s} a^{2}\right)$
- 700-2300 cfg's (4 src's)
MILC

$$
\mathcal{O}\left(a^{4}, \alpha_{s} a^{2}\right)
$$

Generating data: correlators

- 2 \& 3pt correlators

- built from lattice propagators

$$
\begin{aligned}
& \left\langle\left(B_{q}^{0}\right)_{\vec{x}, t} \mid\left(B_{q}^{0}\right)_{\overrightarrow{0}, 0}\right\rangle=\left\langle T\left\{\left(\bar{q} \gamma_{5} b\right)_{\vec{x}, t}\left(q \gamma_{5} \bar{b}\right)_{\overrightarrow{0}, 0}\right\}\right\rangle \\
& \left\langle\left(B_{q}^{0}\right)_{\vec{x}_{2}, t_{2}}\right|\left(\mathcal{O}_{N}\right)_{\overrightarrow{0}, 0}\left|\left(\overline{B_{q}^{0}}\right)_{\vec{x}_{1}, t_{1}}\right\rangle=\left\langle T\left\{\left(\bar{q} \gamma_{5} b\right)_{\vec{x}_{2}, t_{2}}\left(\mathcal{O}_{N}\right)_{\overrightarrow{0}, 0}\left(\bar{q} \gamma_{5} b\right)_{\vec{x}_{1}, t_{1}}\right\}\right\rangle
\end{aligned}
$$

Fitting

- Meson rest frame ($\sum_{\vec{x}_{1}, \vec{x}_{2}}$)
$\left\langle\left\langle B_{q}^{0}\right)_{t} \mid\left(B_{q}^{0}\right)_{0}\right\rangle=\sum_{n} \frac{\left|Z_{n}\right|^{2}}{2 E_{n}}(-)^{n(t+1)}\left(e^{-E_{n} t}+e^{-E_{n}(T-t)}\right)$
$\left\langle\left(B_{q}^{0} t_{t_{2}}\left|\left(\mathcal{O}_{N}\right)\right|\left(\overline{B_{q}^{\sigma}}\right)_{t_{1}}\right\rangle=\right.$
$\sum_{n, m} \frac{\langle n| \mathcal{O}_{N}|m\rangle Z_{n}^{\dagger} Z_{m}}{4 E_{n} E_{m}}(-)^{n\left(t_{1}+1\right)+m\left(t_{2}+1\right)}\left(e^{-E_{n}\left|t_{1}\right|}+e^{-E_{n}\left(T-\left|t_{1}\right|\right)}\right)\left(e^{-E_{m} t_{2}}+e^{-E_{m}\left(T-t_{2}\right)}\right)$
- Fit 2 \& 3pt correlators to extract ME
- simultaneous
- Bayesian
- G. P. Lepage's Python based fitter (Isqfit)

Fitting

- Meson rest frame ($\sum_{\vec{x}_{1}, \vec{x}_{2}}$)
$\left\langle\left\langle B_{q}^{0}\right)_{t} \mid\left(B_{q}^{0}\right)_{0}\right\rangle=\sum_{n} \frac{\left|Z_{n}\right|^{2}}{2 E_{n}}(-)^{n(t+1)}\left(e^{-E_{n} t}+e^{-E_{n}(T-t)}\right)$
$\left\langle\left(B_{q}^{0} t_{t_{2}}\left|\left(\mathcal{O}_{N}\right)\right|\left(\overline{B_{q}^{\mathrm{G}}}\right)_{t_{1}}\right\rangle=\right.$
$\sum_{n, m} \frac{\| n\left|\mathcal{O}_{N}\right| m \mid Z_{n}^{\ddagger} Z_{m}}{4 E_{n} E_{m}}(-)^{n\left(t_{1}+1\right)+m\left(t_{2}+1\right)}\left(e^{-E_{n}\left|t_{1}\right|}+e^{-E_{n}\left(T-\left|t_{1}\right|\right)}\right)\left(e^{-E_{m} t_{2}}+e^{-E_{m}\left(T-t_{2}\right)}\right)$
- Fit 2 \& 3pt correlators to extract ME
- simultaneous
- Bayesian
- G. P. Lepage's Python based fitter (Isqfit)

Simultaneous fit: 2 pt correlator

$$
N^{2 \mathrm{pt}}=2, \mathrm{t}^{2 \mathrm{pt}}: 10-34, \chi^{2} / \mathrm{dof}=73.45 / 79, \mathrm{CL}=0.66
$$

Simultaneous fit: 3pt correlator

Initial results: $\beta_{s}^{N}=f_{B_{s}}\left(M_{B_{s}} B_{B_{S}}^{N}\right)^{1 / 2}$

- Extract "reduced matrix element", β_{N}

$$
\begin{aligned}
\left\langle B_{q}^{0}\right| \mathcal{O}_{N}\left|\overline{B_{q}^{0}}\right\rangle & \propto M \beta_{N}^{2} \\
& \propto f^{2} M^{2} B_{N}
\end{aligned}
$$

- Stat error decrease: [Evans, PhD thesis, UIUc, 2008]

observed
β_{1} : 65\%
$\beta_{2}: 53 \%$

Preliminary: $\beta_{N}=f_{B_{S}}\left(M_{B_{S}} B_{B_{S}}^{N}\right)^{1 / 2}$

Outlook

- continue fitting
- $0.09 \mathrm{fm}, 0.06 \mathrm{fm}, 0.045 \mathrm{fm}$ lattice spacings
- range of light $m_{q}^{\prime} s\left(B_{s}^{0} \rightarrow B^{0}\right)$
- charm heavy quark (D^{0} mixing)
- implement chiPT
- continuum
- staggered
- perturbative matching
- hopefully similar to SM operators

Outlook

- continue fitting
- $0.09 \mathrm{fm}, 0.06 \mathrm{fm}, 0.045 \mathrm{fm}$ lattice spacings
- range of light m_{q} 's $\left(B_{s}^{0} \rightarrow B^{0}\right)$
- charm heavy quark (D^{0} mixing)
- implement chiPT
- continuum [Detmold and Lin, arXiv:0612028, hep-lat, 2006]
- staggered [Laiho and Van de Water, collaboration note, 2007]
- perturbative matching
- hopefully similar to SM operators

Outlook

- continue fitting
- $0.09 \mathrm{fm}, 0.06 \mathrm{fm}, 0.045 \mathrm{fm}$ lattice spacings
- range of light $m_{q}^{\prime} s\left(B_{s}^{0} \rightarrow B^{0}\right)$
- charm heavy quark (D^{0} mixing)
- implement chiPT
- continuum
- staggered
- perturbative matching
- hopefully similar to SM operators
LA FI

$$
\mathcal{A}(t)=\left(N \sigma^{2}\right)^{-1} \sum\left(x_{i+t}-\bar{x}\right)\left(x_{i}-\bar{x}\right)
$$

(a) Prior ensemble: No spatially randomized sources.

(b) New ensemble: Spatially randomized sources.

Figure 6: Ensemble: $a=0.12 \mathrm{fm}, 20^{3} \times 64, m_{l} / m_{s}=0.12$. Missing points indicate $\mathcal{A}(t)<0$.

$$
\tau_{\text {exp }}=-1 / \text { slope }
$$

Local/1S PS 2pt Mass Fits: Binning

For Bs meson 2 pt correlator on coarse $\mathrm{ml}=0.14 \mathrm{~ms}$ ensemble, binning is unnecessary.

Neutral meson mixing: an effective $4 q$ interaction

$-\mathrm{m}_{\mathrm{B}^{0}} \sim 5.2$
$-\mathrm{m}_{\mathrm{b}} \sim 4.2$

$$
\begin{aligned}
& -\mathrm{m}_{\mathrm{D}^{0}} \sim 1.8 \\
& -\mathrm{m}_{\mathrm{c}} \sim 1.3
\end{aligned}
$$

$$
-\Lambda_{\mathrm{QCD}} \sim 0.2
$$

Neutral meson mixing: an effective $4 q$ interaction

Neutral meson mixing: an effective $4 q$ interaction

$\log E(G e V)$
$\left\{\mathrm{m}_{\mathrm{t}} \sim 171\right.$
$\mathrm{m}_{\mathrm{w}^{ \pm}} \sim 80$
$\mathrm{~m}_{\mathrm{B}^{\circ}} \sim 5.2$
$-\mathrm{m}_{\mathrm{b}} \sim 4.2$
$\mathrm{~m}_{\mathrm{D}^{\circ}} \sim 1.8$
$-\mathrm{m}_{\mathrm{c}} \sim 1.3$

Neutral meson mixing: an effective $4 q$ interaction

$\log E(G e V)$
$\left\{\mathrm{m}_{\mathrm{t}} \sim 171\right.$
$-\mathrm{m}_{\mathrm{w}^{ \pm}} \sim 80$
$\mathrm{~m}_{\mathrm{B}^{\circ}} \sim 5.2$
$-\mathrm{m}_{\mathrm{b}} \sim 4.2$
$\mathrm{~m}_{\mathrm{D}^{\circ}} \sim 1.8$
$-\mathrm{m}_{\mathrm{c}} \sim 1.3$

Neutral meson mixing: an effective $4 q$ interaction

$\log E(G e V)$
$\left\{\mathrm{m}_{\mathrm{t}} \sim 171\right.$
$-\mathrm{m}_{\mathrm{W}^{ \pm}} \sim 80$
$-\mathrm{m}_{\mathrm{B}^{\circ}} \sim 5.2$
$-\mathrm{m}_{\mathrm{b}} \sim 4.2$
$\mathrm{~m}_{\mathrm{D}^{\circ}} \sim 1.8$
$-\mathrm{m}_{\mathrm{c}} \sim 1.3$

The calculation: mixing operators

- For $\left\langle X^{0}\right| \mathcal{O}_{i}^{\Delta Q=2}\left|\overline{X^{0}}\right\rangle$, need all $\mathcal{O}_{i}^{\Delta Q=2}$ generalized BSM (Lorentz inv, color singlets)
- examples

$$
\begin{aligned}
& \mathcal{O}_{1}=\bar{Q}_{i}^{\alpha} \gamma_{\mu, i j} L_{j k} q_{k}^{\alpha} \bar{Q}_{r}^{\beta} \gamma_{\mu, r s} L_{s t} q_{t}^{\beta} \\
& \mathcal{O}_{3}=\bar{Q}_{i}^{\alpha} L_{i j} q_{j}^{\beta} \bar{Q}_{r}^{\beta} L_{r s} q_{s}^{\alpha}
\end{aligned}
$$

- notation (Takahashi)

$$
\begin{aligned}
& \bar{Q}_{i}^{\alpha} \gamma_{\mu, i j} L_{j k} q_{k}^{\alpha} \bar{Q}_{r}^{\beta} \gamma_{\mu, r s} L_{s t} q_{t}^{\beta} \longrightarrow\left(\gamma_{\mu} L\right)\left[\gamma_{\mu} L\right] \\
& \bar{Q}_{i}^{\alpha} L_{i j} q_{j}^{\beta} \bar{Q}_{r}^{\beta} L_{r s} q_{s}^{\alpha} \longrightarrow(L][L)
\end{aligned}
$$

The calculation: mixing operators

- Single bilinear spin structures: $\left\{L, R, \gamma_{\mu} L, \gamma_{\mu} R, \sigma_{\mu \nu}\right\}$
- 10 Lorentz inv pairings

$$
\begin{array}{r}
\left\{L \otimes L, L \otimes R, R \otimes L, R \otimes R, \gamma_{\mu} L \otimes \gamma_{\mu} L, \gamma_{\mu} L \otimes \gamma_{\mu} R,\right. \\
\left.\gamma_{\mu} R \otimes \gamma_{\mu} L, \gamma_{\mu} R \otimes \gamma_{\mu} R, \sigma_{\mu \nu} \otimes \sigma_{\mu \nu}, \epsilon_{\mu \nu \rho \tau} \sigma_{\mu \nu} \otimes \sigma_{\rho \tau}\right\}
\end{array}
$$

- Gives 20 Lorentz inv, color singlet pairings

$$
\begin{aligned}
\mathcal{O}_{1} & =\left(\gamma_{\mu} L\right)\left[\gamma_{\mu} L\right] \\
\mathcal{O}_{2} & =(L)[L] \\
\mathcal{O}_{3} & =(L][L) \\
\mathcal{O}_{4} & =(L)[R] \\
\mathcal{O}_{5} & =(L][R)
\end{aligned}
$$

$$
\mathcal{O}_{6}=\left(\gamma_{\mu} L\right)\left[\gamma_{\mu} R\right]
$$

$$
\mathcal{O}_{11}=\left(\gamma_{\mu} R\right]\left[\gamma_{\mu} R\right)
$$

$$
\mathcal{O}_{16}=\left(\gamma_{\mu} R\right]\left[\gamma_{\mu} L\right)
$$

$$
\mathcal{O}_{7}=\left(\gamma_{\mu} L\right]\left[\gamma_{\mu} R\right)
$$

$$
\mathcal{O}_{12}=\left(\gamma_{\mu} L\right]\left[\gamma_{\mu} L\right)
$$

$$
\mathcal{O}_{17}=(R)[L]
$$

$$
\mathcal{O}_{8}=(R)[R]
$$

$$
\mathcal{O}_{13}=\left(\sigma_{\mu \nu}\right)\left[\sigma_{\mu \nu}\right]
$$

$$
\mathcal{O}_{18}=(R][L)
$$

$$
\mathcal{O}_{9}=(R][R)
$$

$$
\mathcal{O}_{14}=\left(\sigma_{\mu \nu}\right]\left[\sigma_{\mu \nu}\right)
$$

$$
\mathcal{O}_{19}=\epsilon_{\mu \nu \rho \tau}\left(\sigma_{\mu \nu}\right)\left[\sigma_{\rho \tau}\right]
$$

$$
\mathcal{O}_{10}=\left(\gamma_{\mu} R\right)\left[\gamma_{\mu} R\right]
$$

Chiral Fierz transformations

$$
\left(\Gamma_{A}\right)\left[\Gamma_{B}\right]=\sum_{C, D} \frac{1}{4} \operatorname{Tr}\left[\Gamma_{A} \tilde{\Gamma}_{C} \Gamma_{B} \tilde{\Gamma}_{D}\right]\left(\Gamma_{D}\right]\left[\Gamma_{C}\right)
$$

$\mathcal{O}_{1}=-\mathcal{O}_{12}$
$8 \mathcal{O}_{3}=4 \mathcal{O}_{2}+2 \mathcal{O}_{13}-i \mathcal{O}_{19}$
$2 \mathcal{O}_{5}=\mathcal{O}_{15}$
$\mathcal{O}_{7}=2 \mathcal{O}_{17}$
$8 \mathcal{O}_{9}=4 \mathcal{O}_{8}+2 \mathcal{O}_{13}+i \mathcal{O}_{19}$
$\mathcal{O}_{13}=6\left(\mathcal{O}_{3}+\mathcal{O}_{9}\right)-2 \mathcal{O}_{14}$
$\mathcal{O}_{19}=12 i\left(\mathcal{O}_{3}-\mathcal{O}_{9}\right)-2 \mathcal{O}_{20}$

$$
8 \mathcal{O}_{2}=4 \mathcal{O}_{3}+2 \mathcal{O}_{14}-i \mathcal{O}_{20}
$$

$$
2 \mathcal{O}_{4}=\mathcal{O}_{16}
$$

$$
\mathcal{O}_{6}=2 \mathcal{O}_{18}
$$

$$
8 \mathcal{O}_{8}=4 \mathcal{O}_{9}+2 \mathcal{O}_{14}+i \mathcal{O}_{20}
$$

$$
\mathcal{O}_{10}=-\mathcal{O}_{11}
$$

$$
\mathcal{O}_{14}=6\left(\mathcal{O}_{2}+\mathcal{O}_{8}\right)-2 \mathcal{O}_{13}
$$

$$
\mathcal{O}_{20}=12 i\left(\mathcal{O}_{2}-\mathcal{O}_{8}\right)-2 \mathcal{O}_{19}
$$

The calculation: generating data

Fermion doubling: discrete Dirac eqn $\rightarrow 16$ poles

- 15 extra fermions with $p_{\mu} \approx \pi / a$
- Approach for handling them depends on mass
- heavy quarks: Wilson quarks (explicit $\chi \mathrm{SB}$)
- light quarks (maintain χ symmetry)
- sea: rooted, staggered (non-local, oscillating states)
- valence: naïve (local interpolating operators)

The calculation: generating data, gauge configurations

MILC collaboration

- 2+1 sea quarks
- Generated with importance sampling, ie. with probability distribution

$$
\exp \left(-S\left[U_{i}\right]+\ln [\operatorname{det}(\Delta+m)]\right)
$$

- Sea quarks
- rooted staggered
- AsqTad improved, $\mathcal{O}\left(a^{4}, \alpha_{s} a^{2}\right)$
- Gluons
- Symanzik, tadpole improved, $\mathcal{O}\left(a^{4}, \alpha_{s} a^{2}\right)$

The calculation: generating data, gauge configurations

$a(\mathrm{fm})$	$(L / a)^{3} \times(T / a)$	m_{l} / m_{s}	$\#$ ens's	\# config's
0.12	$20^{3} \times 64$	$0.12-1$	11	8710
0.12	$24^{3} \times 64$	0.1	1	1802
0.12	$28^{3} \times 64$	0.2	1	275
0.12	$32^{3} \times 64$	1	1	701
0.09	$28^{3} \times 96$	$0.2-1$	6	6565
0.09	$32^{3} \times 96$	0.15	1	540
0.09	$40^{3} \times 96$	$0.1-1$	3	2097
0.09	$64^{3} \times 96$	0.05	1	530
0.06	$48^{3} \times 144$	$0.2-0.4$	3	2013
0.06	$56^{3} \times 144$	0.14	1	800
0.06	$64^{3} \times 144$	$0.1-0.33$	2	1309
0.045	$64^{3} \times 192$	0.2	1	861

Rooted, staggered, AsqTad

- sea quarks

- AsqTad = a squared, tadpole improved
- staggered (Kogut \& Susskind) spin diagonalizes quark action (keep only 1 of 4 components)
- reduces quarks from 16 to 4
- rooted takes $1 / 4$ root of $\operatorname{det}(\not D+m)$
- reduces quarks from 4 to 1

Tadpole Improvement

- Using gauge link $U_{x, \mu}=e^{i a g G_{\mu}(x)}$, expansion in a gives a tower of vertices

- UV modes give "tadpoles"
- integrating out UV modes, giving

$$
U_{\mu} \rightarrow u_{0} e^{i a g A_{\mu}^{\mathrm{IR}}} \approx u_{0}\left(1+\operatorname{iag} A_{\mu}^{\mathrm{IR}}\right)
$$

- Tadpole improvement uses U_{μ} / u_{0}
- u_{0} measured on lattice as mean field value of links

Symanzik Improved glue

- Start with Wilson's gauge action
- Add terms to action to cancel order (a^2) effects
- coeffecients determined by perturbation theory at one loop (Lüscher and Weisz)
- lattice action viewed as eff. theory, higher order terms are irrelevant operators
- Resulting errors are $\mathcal{O}\left(a^{4}, \alpha_{s} a^{2}\right)$

Wilson, SW, Fermilab interpretation

- Wilson: add dim 5 term that gives "extra" fermions mass
- SW: add another dim 5 term to cancel O(a) error from the Wilson term ("clover action")
- Fermilab interpretation: matches improvement coefficients to HQET
- action valid for all masses (ie. ma > 1)
- errors $\mathcal{O}\left(\frac{\alpha_{s} \Lambda_{Q C D}}{m_{b}}, \frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}\right)$

Naïve AsqTad

- valence quarks

$$
\left.\langle 0| \mathcal{O}|0\rangle=\frac{\int\left[d G_{\mu}\right] \mathcal{O}(\mathbb{D}+m)^{-1}}{} G_{\mu}\right) e^{-S\left[G_{\mu}\right]+\ln [\operatorname{det}(\mathbb{D}+m)]}
$$

- naïve $=$ retain locality in favor of "doublers"
- eases building interpolating operators
- AsqTad = a squared, tadpole improved

The calculation: error budget

- Systematic errors
- inputs ($\left.m_{\text {quark's }}, a\right)$
- discretization (m_{q}, m_{Q})
- finite volume
- chiral extrapolation
- renormalization/matching (one-loop)

The calculation: extracting results, fitting the data

- Bayesian fitting
$\chi^{2}=\sum_{t_{1}, t_{2}}\left(f_{t_{1}}(\{p\})-\bar{d}_{t_{1}}\right)\left(\sigma_{t_{1} t_{2}}^{2}\right)^{-1}\left(f_{t_{2}}(\{p\})-\bar{d}_{t_{2}}\right)+\sum_{n} \frac{\left(p-\hat{p}_{n}\right)^{2}}{\hat{\sigma}_{n}^{2}}$
- Considerations
- time range of data to fit
- number of states to include in fit
- choice of priors and widths

FIRST EVIDENCE OF NEW PHYSICS IN b $\leftrightarrow \mathrm{s}$ TRANSITIONS

(UTfit Collaboration)

M. Bona, ${ }^{1}$ M. Ciuchini, ${ }^{2}$ E. Franco, ${ }^{3}$ V. Lubicz, ${ }^{2,4}$ G. Martinelli,,${ }^{3,5}$ F. Parodi, ${ }^{6}$ M. Pierini, ${ }^{1}$ C. Schiavi, ${ }^{6}$ L. Silvestrini,,${ }^{3}$ V. Sordini, ${ }^{7}$ A. Stocchi, ${ }^{7}$ and V. Vagnoni ${ }^{8}$
${ }^{1}$ CERN, CH-1211 Geneva 23, Switzerland
${ }^{2}$ INFN, Sezione di Roma Tre, I-00146 Roma, Italy
${ }^{3}$ INFN, Sezione di Roma, I-00185 Roma, Italy
${ }^{4}$ Dipartimento di Fisica, Università di Roma Tre, I-00146 Roma, Italy
${ }^{5}$ Dipartimento di Fisica, Università di Roma "La Sapienza", I-00185 Roma, Italy
${ }^{6}$ Dipartimento di Fisica, Università di Genova and INFN, I-16146 Genova, Italy
${ }^{7}$ Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, BP 34, F-91898 Orsay Cedex, France ${ }^{8}$ INFN, Sezione di Bologna, I-40126 Bologna, Italy

We combine all the available experimental information on B_{s} mixing, including the very recent tagged analyses of $B_{s} \rightarrow J / \Psi \phi$ by the CDF and $\mathrm{D} \emptyset$ collaborations. We find that the phase of the B_{s} mixing amplitude deviates more than 3σ from the Standard Model prediction. While no single measurement has a 3σ significance yet, all the constraints show a remarkable agreement with the combined result. This is a first evidence of physics beyond the Standard Model. This result disfavours New Physics models with Minimal Flavour Violation with the same significance.

Evidence for an anomalous like-sign dimuon charge asymmetry

(The D0 Collaboration*)

(Dated: May 16, 2010)
We measure the charge asymmetry A of like-sign dimuon events in $6.1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions recorded with the D0 detector at a center-of-mass energy $\sqrt{s}=1.96 \mathrm{TeV}$ at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic b-hadron decays: $A_{\mathrm{sl}}^{b}=$ -0.00957 ± 0.00251 (stat) ± 0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction $A_{\mathrm{sl}}^{b}(S M)=\left(-2.3_{-0.6}^{+0.5}\right) \times 10^{-4}$ and provides first evidence of anomalous CP-violation in the mixing of neutral B mesons.

PACS numbers: $13.25 . \mathrm{Hw}$; 14.40.Nd

Observation of $B_{s}^{0}-\bar{B}_{s}^{0}$ Oscillations

(CDF Collaboration)

We report the observation of B_{s}^{0} - \bar{B}_{s}^{0} oscillations from a time-dependent measurement of the $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillation frequency Δm_{s}. Using a data sample of $1 \mathrm{fb}^{-1}$ of $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$ collected with the CDF II detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed hadronic B_{s} decays, 3100 partially reconstructed hadronic B_{s} decays, and 61500 partially reconstructed semileptonic B_{s} decays. We measure the probability as a function of proper decay time that the B_{s} decays with the same, or opposite, flavor as the flavor at production, and we find a signal for $B_{s}^{0}-\bar{B}_{s}^{0}$ oscillations. The probability that random fluctuations could produce a comparable signal is 8×10^{-8}, which exceeds 5σ significance. We measure $\Delta m_{s}=17.77 \pm 0.10$ (stat) ± 0.07 (syst) ps^{-1} and extract $\left|V_{\text {td }} / V_{\text {ts }}\right|=0.2060 \pm$ $0.0007\left(\Delta m_{s}\right)_{-0.0060}^{+0.0081}\left(\Delta m_{d}+\right.$ theor $)$.

