Preliminary study of the non perturbative renormalization of $K \rightarrow \pi(\pi)$ operators with $n_{f}=2+1$ Domain Wall fermions

Peter Boyle, Nicolas Garron
University of Edinburgh

for RBC-UKQCD collaboration

Motivations

Direct and indirect CP violation occur in $K \rightarrow \pi \pi$ decays
\triangleright Direct CP violation well measured experimentally, but $\epsilon^{\prime} / \epsilon$ poorly determined theoretically Large theoretical uncertainties coming from the non-perturbative part
\triangleright Constraint the SM model via the CKM matrix, room for BSM physics ?
$\triangleright \Delta I=1 / 2$ rule
\triangleright Challenge for the lattice community, chiral fermions have an important rôle to play

Computation of $\epsilon^{\prime} / \epsilon$

Kaon decays to $(\pi \pi)_{\mathrm{I}=0,2}$ through an effective Hamiltonian

$$
H^{\Delta s=1}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1}^{10}\left(V_{u d} V_{u s}^{*} z_{i}(\mu)-V_{t d} V_{t s}^{*} y_{i}(\mu)\right) Q_{i}(\mu)\right\}
$$

$\Rightarrow 10$ operators, which mix under renormalization
\Rightarrow 2-pion state on the lattice (can one trust $\chi \mathrm{PT}$ at the kaon mass ?)
See eg [Norman Christ © Kaon'09] for an overview of different strategies.

- Matrix element \longrightarrow See talks by Matthew Lightman, and by Qi Liu
- Renormalization \longrightarrow this talk

The Z factors have been already computed in the quenched case, this work follows [RBC'01]

Renormalization of 4-quark operators

- Mixing pattern given by the $S U(3)_{L} \otimes S U(3)_{R}$ decomposition of the operators
- Some Z factors of $\Delta I=1 / 2$ operators can be obtained by from $\Delta I=3 / 2$ operators
- Z factors of $\langle\pi| O^{\Delta S=1}|K\rangle$ can be related to those of $\langle\bar{K}| O^{\Delta S=2}|K\rangle$
- Dangerous mixing with lower dimension operators constrained by chiral symmetry
\Rightarrow Important to work with good chiral-flavor symmetry
\Rightarrow Domain Wall action is a natural candidate

4-quark operators (II)

Current-Current

$$
Q_{2}=(\bar{s} u)_{\mathrm{V}-\mathrm{A}}(\bar{u} d)_{\mathrm{V}-\mathrm{A}} \quad Q_{1}=\text { color mixed }
$$

$\underline{\text { QCD penguins }}$

$$
\begin{aligned}
Q_{3} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{4}=\text { color mixed } \\
Q_{5} & =(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{6}=\text { color mixed }
\end{aligned}
$$

EW penguins

$$
\begin{array}{ll}
Q_{7}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}+\mathrm{A}} & Q_{8}=\text { color mixed } \\
Q_{9}=\frac{3}{2}(\bar{s} d)_{\mathrm{V}-\mathrm{A}} \sum_{q=u, d, s} e_{q}(\bar{q} q)_{\mathrm{V}-\mathrm{A}} & Q_{10}=\text { color mixed }
\end{array}
$$

$S U(3)_{L} \otimes S U(3)_{R}$ decomposition

Irrep of $S U(3)_{L} \otimes S U(3)_{R}$

$$
\begin{aligned}
& \overline{3} \otimes 3=8+1 \\
& \overline{8} \otimes 8=27+\overline{10}+10+8+8+1
\end{aligned}
$$

Decomposition of the 4-quark operators gives

$$
\begin{aligned}
Q_{1,2} & =Q_{1,2}^{(27,1), \Delta I=3 / 2}+Q_{1,2}^{(27,1), \Delta I=1 / 2}+Q_{1,2}^{(8,8), \Delta I=1 / 2} \\
Q_{3,4} & =Q_{3,4}^{(8,1), \Delta I=1 / 2} \\
Q_{5,6} & =Q_{5,6}^{(8,1), \Delta I=1 / 2} \\
Q_{7,8} & =Q_{7,8}^{(8,8), \Delta I=3 / 2}+Q_{7,8}^{(8,8), \Delta I=1 / 2} \\
Q_{9,10} & =Q_{9,10}^{(27,1), \Delta I=3 / 2}+Q_{9,10}^{(27,1), \Delta I=1 / 2}+Q_{9,10}^{(8,8), \Delta I=1 / 2}
\end{aligned}
$$

Renormalization basis

We build a basis of seven 4-quark operatrors,

	$(27,1)$	$(8,1)$	$(8,8)$
Q_{1}^{\prime}	$3 / 2,1 / 2$		
$Q_{2,3}^{\prime}$		$1 / 2$	
$Q_{5,6}^{\prime}$		$1 / 2$	
$Q_{7,8}^{\prime}$			$3 / 2,1 / 2$

\Rightarrow Renormalization matrix should be $\left(\begin{array}{ccccccc}Z_{11} & & & & & & \\ & Z_{22} & Z_{23} & Z_{24} & Z_{25} & & \\ & Z_{32} & Z_{33} & Z_{34} & Z_{45} & & \\ & Z_{52} & Z_{53} & Z_{54} & Z_{55} & & \\ & Z_{62} & Z_{63} & Z_{64} & Z_{65} & & \\ & & & & & Z_{77} & Z_{78} \\ & & & & & Z_{87} & Z_{88}\end{array}\right)$

$\Delta I=3 / 2$ operators

Furthermore, different components of a chiral multiplet have the same renormalization factor
\Rightarrow For $Q_{1}^{\prime}, Q_{7}^{\prime}, Q_{8}^{\prime}$, it enough to compute the $\Delta I=3 / 2$ part
\Rightarrow Simplifies the computation since no disconnected parts are involved
These Z-factors are also involved in a compuation of B_{K} BSM

Non perturbative Renormalization

See e.g. Yasumichi Aoki @ lat'09 for a review,
Rome-Southampton method also discussed in the talks by Francesco di Renzo, Konstantin Petrov

Our choice :

- Momentum sources [QCDSF]

Solve $\quad \sum_{y} D(x, y) S_{p}(y)=\exp (i p . x)$
Obtain $\quad S_{p}(x)=\sum_{y} D^{-1}(x, y) \exp (i p . y)$

- Non exceptional kinematic [Yasumichi Aoki et al '08]

$$
p_{1}^{2}=p_{2}^{2}=\left(p_{1}-p_{2}\right)^{2}
$$

- Twisted boundary conditions

See talk by [Rudy Arthur]

Connected part $\Delta I=3 / 2$

We compute the amputed vertex function with gauge fixed momentum source of $\left(\bar{\Psi}_{1} \Gamma \Psi_{2}\right)\left(\bar{\Psi}_{3} \Gamma \Psi_{4}\right)$ (color unmixed) with the following Γ structure

$$
\begin{aligned}
& \gamma_{\mu} \times \gamma_{\mu}+\gamma_{\mu} \gamma_{5} \times \gamma_{\mu} \gamma_{5} \\
& \gamma_{\mu} \times \gamma_{\mu}-\gamma_{\mu} \gamma_{5} \times \gamma_{\mu} \gamma_{5} \\
& 1 \times 1+\gamma_{5} \times \gamma_{5} \\
& 1 \times 1-\gamma_{5} \times \gamma_{5} \\
& \sigma_{\mu \nu}
\end{aligned}
$$

Related to B_{K}^{BSM}, something that Jan Wennekers was working on [Jan Wennekers @lat'08]

Example of results for the connected part $\Delta I=3 / 2$

$$
16^{3} \times 32, \Lambda_{V V+A A}
$$

/home/Q01/ngarron/work/npr/BKsusy/mu0.02/BK.agr

Example of results for the connected part $\Delta I=3 / 2$

$$
16^{3} \times 32, \Lambda_{V V+A A}
$$

/home/Q01/ngarron/work/npr/BKsusy/mu0.02/BK.agr

Example of results for the connected part $\Delta I=3 / 2$

$$
16^{3} \times 32, \Lambda_{i j} / \Lambda_{A}^{2} \text { for } Q_{7}, Q_{8}
$$

/home/Q01/ngarron/work/npr/BKsusy/mu0.02/BK.agr

Example of results for the connected part $\Delta I=3 / 2$

$$
32^{3} \times 64, \Lambda_{i j} / \Lambda_{A}^{2} \text { for } Q_{7}, Q_{8}
$$

./BKsusy.agr

Strategy for the disconnected diagrams

For the $(8,8)$, we have to compute diagrams like

Strategy for the disconnected diagrams

- Invert the Dirac operator on a Z_{2} stochastic source

$$
D(x, y) G^{\text {eye }}(y)=\eta(x) \Rightarrow G^{\text {eye }}(x)=D^{-1}(x, y) \eta(y)
$$

and compute (add the Γ matrices at the right place)

$$
\begin{aligned}
& \sum_{z}\left\langle\left(\gamma_{5} S^{\prime}{ }_{p_{2}}(z)^{\dagger} \gamma_{5}\right) \eta(z) G^{\text {eye }}(z){S^{\prime}}_{p_{3}}(z) S\left(p_{4}, p_{1}\right)\right\rangle \\
& =\sum_{z, x_{1} \ldots x_{4}}\left\langle e^{-i p_{2}\left(x_{2}-z\right)} D^{-1}\left(x_{2}, z\right) D^{-1}(z, z) D^{-1}\left(z, x_{3}\right) e^{i p_{3}\left(x_{3}-z\right)} e^{-i p_{4} x_{4}} D^{-1}\left(x_{4}, x_{1}\right) e^{i p_{1} x_{1}}\right\rangle
\end{aligned}
$$

- For the spectator we just need

$$
S(p, q)=\sum_{x} S_{q}(x) e^{-i p \cdot x}=\sum_{x y} D^{-1}(x, y) e^{i(q \cdot y-p \cdot x)}
$$

■ on the way...

Outlook

- We are currently doing the NPR of $K \rightarrow \pi \pi$
- Connected part far advanced
- Mom source + non-exceptional kinematic+ twisted boundary conditions, look very promising
- Implementation of the disconnected part in on the way
- We hope to check the results obtained with point source Shu Li phD thesis
- ... More next year ...

Thanks to Rudy Arthur, Peter Boyle, Norman Christ, Chris Dawson, Luigi del Debbio, Chris Kelly, Robert Mawhinney, Chris Sachrajda, and the other members of RBC-UKQCD

