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Motivations

Direct and indirect CP violation occur in K → ππ decays

. Direct CP violation well measured experimentally, but ε′/ε poorly determined theoretically
Large theoretical uncertainties coming from the non-perturbative part

. Constraint the SM model via the CKM matrix, room for BSM physics ?

. ∆I = 1/2 rule

. Challenge for the lattice community,
chiral fermions have an important rôle to play
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Computation of ε′/ε

Kaon decays to (ππ)I=0,2 through an effective Hamiltonian

H∆s=1 =
GF√

2

{ 10∑
i=1

(
VudV

∗
uszi (µ)− VtdV

∗
tsyi (µ)

)
Qi (µ)

}

⇒ 10 operators, which mix under renormalization

⇒ 2-pion state on the lattice (can one trust χPT at the kaon mass ?)

See eg [Norman Christ @ Kaon’09] for an overview of different strategies.

Matrix element −→ See talks by Matthew Lightman , and by Qi Liu

Renormalization −→ this talk

The Z factors have been already computed in the quenched case, this work follows [ RBC’01]
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Renormalization of 4-quark operators

Mixing pattern given by the SU(3)L ⊗ SU(3)R decomposition of the operators

Some Z factors of ∆I = 1/2 operators can be obtained by from ∆I = 3/2 operators

Z factors of 〈π|O∆S=1|K〉 can be related to those of 〈K̄ |O∆S=2|K〉

Dangerous mixing with lower dimension operators constrained by chiral symmetry

. . .

⇒ Important to work with good chiral-flavor symmetry

⇒ Domain Wall action is a natural candidate
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4-quark operators (II)

Current-Current

Q2 = (s̄u)V−A(ūd)V−A Q1 = color mixed

QCD penguins

Q3 = (s̄d)V−A

∑
q=u,d,s

(q̄q)V−A Q4 = color mixed

Q5 = (s̄d)V−A

∑
q=u,d,s

(q̄q)V+A Q6 = color mixed

EW penguins

Q7 =
3

2
(s̄d)V−A

∑
q=u,d,s

eq(q̄q)V+A Q8 = color mixed

Q9 =
3

2
(s̄d)V−A

∑
q=u,d,s

eq(q̄q)V−A Q10 = color mixed
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SU(3)L ⊗ SU(3)R decomposition

Irrep of SU(3)L ⊗ SU(3)R

3⊗ 3 = 8 + 1

8⊗ 8 = 27 + 10 + 10 + 8 + 8 + 1

Decomposition of the 4-quark operators gives

Q1,2 = Q
(27,1),∆I=3/2
1,2 + Q

(27,1),∆I=1/2
1,2 + Q

(8,8),∆I=1/2
1,2

Q3,4 = Q
(8,1),∆I=1/2
3,4

Q5,6 = Q
(8,1),∆I=1/2
5,6

Q7,8 = Q
(8,8),∆I=3/2
7,8 + Q

(8,8),∆I=1/2
7,8

Q9,10 = Q
(27,1),∆I=3/2
9,10 + Q

(27,1),∆I=1/2
9,10 + Q

(8,8),∆I=1/2
9,10

see eg [Claude Bernard @ TASI’89] and [RBC’01]
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Renormalization basis

We build a basis of seven 4-quark operatrors,

(27,1) (8,1) (8,8)
Q′1 3/2, 1/2
Q′2,3 1/2

Q′5,6 1/2

Q′7,8 3/2, 1/2

⇒ Renormalization matrix should be



Z11

Z22 Z23 Z24 Z25

Z32 Z33 Z34 Z45

Z52 Z53 Z54 Z55

Z62 Z63 Z64 Z65

Z77 Z78

Z87 Z88
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∆I = 3/2 operators

Furthermore, different components of a chiral multiplet have the same renormalization factor

⇒ For Q′1,Q
′
7,Q
′
8, it enough to compute the ∆I = 3/2 part

⇒ Simplifies the computation since no disconnected parts are involved

These Z-factors are also involved in a compuation of BK BSM
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Non perturbative Renormalization

See e.g. Yasumichi Aoki @ lat’09 for a review,
Rome-Southampton method also discussed in the talks by Francesco di Renzo, Konstantin Petrov

Our choice :

Momentum sources [QCDSF]

Solve
∑
y

D(x , y)Sp(y) = exp (ip.x)

Obtain Sp(x) =
∑
y

D−1(x , y) exp (ip.y)

Non exceptional kinematic [Yasumichi Aoki et al ’08]

p2
1 = p2

2 = (p1 − p2)2

Twisted boundary conditions

See talk by [Rudy Arthur]
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Connected part ∆I = 3/2

We compute the amputed vertex function with gauge fixed momentum source of
(Ψ̄1ΓΨ2)(Ψ̄3ΓΨ4) (color unmixed) with the following Γ structure

γµ × γµ + γµγ5 × γµγ5

γµ × γµ − γµγ5 × γµγ5

1× 1 + γ5 × γ5

1× 1− γ5 × γ5

σµν

Related to BBSM
K , something that Jan Wennekers was working on [Jan Wennekers @lat’08]
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Example of results for the connected part ∆I = 3/2

163 × 32, ΛVV+AA
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Thanks to Rudy Arhtur !
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Example of results for the connected part ∆I = 3/2

163 × 32, ΛVV+AA
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Thanks to Rudy Arhtur !
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Example of results for the connected part ∆I = 3/2

163 × 32, Λij/Λ2
A for Q7,Q8
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Thanks to Rudy Arhtur !
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Example of results for the connected part ∆I = 3/2

323 × 64, Λij/Λ2
A for Q7,Q8
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Thanks to Rudy Arhtur !
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Strategy for the disconnected diagrams

For the (8,8), we have to compute diagrams like

s(p4, δ) d̄(p1, α)

d(p2, β)d̄(p3, γ)

γL
µ

γL,R
µ

u

s(p4, δ) d̄(p2, β)

d(p1, α)d̄(p3, γ)

γL
µ γL,R

µ

d
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Strategy for the disconnected diagrams

Invert the Dirac operator on a Z2 stochastic source

D(x , y)Geye(y) = η(x) ⇒ Geye(x) = D−1(x , y) η(y)

and compute (add the Γ matrices at the right place )

∑
z

〈
(
γ5S
′
p2 (z)†γ5

)
η(z)Geye(z) S ′p3 (z)S(p4, p1)〉

=
∑

z,x1...x4

〈e−ip2(x2−z)D−1(x2, z)D−1(z, z)D−1(z, x3)e ip3(x3−z)e−ip4x4D−1(x4, x1)e ip1x1 〉

For the spectator we just need

S(p, q) =
∑
x

Sq(x)e−ip.x =
∑
xy

D−1(x , y)e i(q.y−p.x)

on the way . . .
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Outlook

We are currently doing the NPR of K → ππ

Connected part far advanced

Mom source + non-exceptional kinematic+ twisted boundary conditions, look very
promising

Implementation of the disconnected part in on the way

We hope to check the results obtained with point source Shu Li phD thesis

. . . More next year . . .

Thanks to Rudy Arthur, Peter Boyle, Norman Christ, Chris Dawson, Luigi del Debbio, Chris
Kelly, Robert Mawhinney, Chris Sachrajda, and the other members of RBC-UKQCD
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