ntroductio	
00	

Extracting resonance parameters from lattice data: Part II

Darrán McManus

Trinity College Dublin, Ireland Supported by Science Foundation Ireland

Work with Dr. Mike Peardon and Dr. Pietro Giudice

June 15, 2010

Introduction 00	Lüscher's Method 00000000	Probability Distribution Method	Conclusion and Outlook
Outline			

Introduction

- The Problem of Resonances
- The Model

2 Lüscher's Method

- The Formula
- Consequences
- Application to Data
- Continuum Relations
- Lattice Relations
- Probability Distribution Method
 - Outline
 - Histogram
 - Numerical Comparison
 - The Two Methods
 - Conclusion and Outlook

Introduction Lüscher's Method Probability Distribution Method Conclusion and Outlook

• In lattice field theory masses are obtained from correlators C(t), which behave for large t as

$$C(t) \propto e^{-mt}$$
 (1)

with m being the lightest mass in the channel.

- This will not work for resonances.
- Never the lightest mass in their channel, mass exceeds many-particle-threshold, no clear signal.

Introduction Lüscher's Method Probability Distribution Method Conclusion and Outlook

• In lattice field theory masses are obtained from correlators C(t), which behave for large t as

$$C(t) \propto e^{-mt}$$
 (1)

with m being the lightest mass in the channel.

- This will not work for resonances.
- Never the lightest mass in their channel, mass exceeds many-particle-threshold, no clear signal.

Introduction Lüscher's Method Probability Distribution Method Conclusion and Outlook ●○ Distribution Method Conclusion and Outlook The Problem of Resonances

• In lattice field theory masses are obtained from correlators C(t), which behave for large t as

$$C(t) \propto e^{-mt}$$
 (1)

with m being the lightest mass in the channel.

• Never the lightest mass in their channel, mass exceeds many-particle-threshold, no clear signal.

Introduction ○●	Lüscher's Method 00000000	Probability Distribution Method	Conclusion and Outlook
The Model			

• We used the O(4) model

$$\mathcal{L} = \frac{1}{2} \left(\partial \phi_i \partial \phi_i \right) + \lambda \left(\phi_i^2 - \nu^2 \right)^2 - M_\pi^2 \nu \phi_4 \tag{2}$$

For the broken phase

$$\mathcal{L} = \frac{1}{2} \left(\partial \pi_i \partial \pi_i \right) + \frac{1}{2\nu} \sigma \left(\partial \pi_i \partial \pi_i \right) +$$

$$\frac{1}{2} \left(\partial \sigma \partial \sigma \right) + \lambda \sigma^4 + 4\nu^2 \lambda \sigma^2 + 4\nu \lambda \sigma^3 +$$

$$\frac{M_{\pi^2}}{2} \left(\pi_i \pi_i \right) + \frac{M_{\pi}^2}{2\nu} \sigma \pi_i \pi_i$$
(3)

• Relevant vertices are $\frac{1}{2v}\sigma(\partial \pi_i\partial \pi_i)$ and $\frac{M_{\pi}^2}{2v}\sigma \pi_i\pi_i$

Introduction ○●	Lüscher's Method 00000000	Probability Distribution Method	Conclusion and Outlook
The Model			

• We used the O(4) model

$$\mathcal{L} = \frac{1}{2} \left(\partial \phi_i \partial \phi_i \right) + \lambda \left(\phi_i^2 - \nu^2 \right)^2 - M_\pi^2 \nu \phi_4 \tag{2}$$

• For the broken phase

$$\mathcal{L} = \frac{1}{2} \left(\partial \pi_i \partial \pi_i \right) + \frac{1}{2\nu} \sigma \left(\partial \pi_i \partial \pi_i \right) +$$
(3)
$$\frac{1}{2} \left(\partial \sigma \partial \sigma \right) + \lambda \sigma^4 + 4\nu^2 \lambda \sigma^2 + 4\nu \lambda \sigma^3 +$$
$$\frac{M_{\pi^2}}{2} \left(\pi_i \pi_i \right) + \frac{M_{\pi}^2}{2\nu} \sigma \pi_i \pi_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Relevant vertices are $\frac{1}{2\nu}\sigma(\partial\pi_i\partial\pi_i)$ and $\frac{M_{\pi}^2}{2\nu}\sigma\pi_i\pi_i$

Introduction ○●	Lüscher's Method 00000000	Probability Distribution Method	Conclusion and Outlook
The Model			

• We used the O(4) model

$$\mathcal{L} = \frac{1}{2} \left(\partial \phi_i \partial \phi_i \right) + \lambda \left(\phi_i^2 - \nu^2 \right)^2 - M_\pi^2 \nu \phi_4 \tag{2}$$

• For the broken phase

$$\mathcal{L} = \frac{1}{2} \left(\partial \pi_i \partial \pi_i \right) + \frac{1}{2\nu} \sigma \left(\partial \pi_i \partial \pi_i \right) +$$
(3)
$$\frac{1}{2} \left(\partial \sigma \partial \sigma \right) + \lambda \sigma^4 + 4\nu^2 \lambda \sigma^2 + 4\nu \lambda \sigma^3 +$$
$$\frac{M_{\pi^2}}{2} \left(\pi_i \pi_i \right) + \frac{M_{\pi}^2}{2\nu} \sigma \pi_i \pi_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Relevant vertices are $\frac{1}{2v}\sigma(\partial\pi_i\partial\pi_i)$ and $\frac{M_{\pi}^2}{2\nu}\sigma\pi_i\pi_i$

Introduction 00	Lüscher's Method ●○○○○○○○	Probability Distribution Method	Conclusion and Outlook
The Forn	nula		

• Lüscher's formula [Lüscher, 1991] provides a direct connection between the two-particle (P = 0) spectrum in finite volume and the scattering phase shift.

$$\delta(p) = -\phi(\kappa) + \pi n \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

$$Tan(\phi(\kappa)) = \left(\frac{\pi^{3/2}\kappa}{Z_{00}(1;\kappa^2)}\right), \kappa = \frac{pL}{2\pi}$$
(5)

p is the relative momentum.

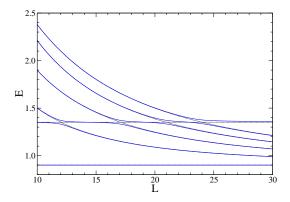
$$\mathcal{Z}_{js}(1;q^2) = \sum_{\underline{n}\in\mathbb{Z}^3}rac{r^jY_{js}(heta,\phi)}{(\underline{n}^2-q^2)^s}$$

Introduction 00	Lüscher's Method ●०००००००	Probability Distribution Method	Conclusion and Outlook
The Forn	nula		

• Lüscher's formula [Lüscher, 1991] provides a direct connection between the two-particle (P = 0) spectrum in finite volume and the scattering phase shift.

$$\delta(p) = -\phi(\kappa) + \pi n \tag{4}$$

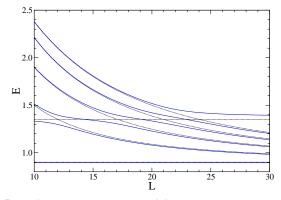
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで


$$Tan(\phi(\kappa)) = \left(\frac{\pi^{3/2}\kappa}{Z_{00}(1;\kappa^2)}\right), \kappa = \frac{pL}{2\pi}$$
(5)

p is the relative momentum.

٠

$$\mathcal{Z}_{js}(1;q^2) = \sum_{\underline{n}\in\mathbb{Z}^3} \frac{r^j Y_{js}(\theta,\phi)}{(\underline{n}^2 - q^2)^s}$$
(6)


Introduction 00	Lüscher's Method ○●○○○○○○○	Probability Distribution Method	Conclusion and Outlook
Consequence	ces		

Avoided level crossing, plateau due to resonance.

Introduction 00	Lüscher's Method ○O●○○○○○○	Probability Distribution Method	Conclusion and Outlook
Consequence	ces		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Broader as resonance width increases.

Introduction 00	Lüscher's Method ○○○●○○○○○	Probability Distribution Method	Conclusion and Outlook
Application	to Data		

- $E \rightarrow p$, Dispersion relations. $p \rightarrow \delta(p)$, Lüscher's formula.
- Resonance parameters can then be extracted by Breit-Wigner formula

$$\delta(\rho) \approx Tan^{-1} \left(\frac{4\rho^2 + 4M_\pi^2 - M_\sigma^2}{M_\sigma \Gamma_\sigma} \right)$$
(7)

$$A(m) \sim (0.00027) m^8 + (0.00027) m^8$$

$$(\kappa) \approx (-0.09937)\kappa^{\circ} + (0.47809)\kappa^{\circ} + (-0.62064)\kappa^{4} + (3.38974)\kappa^{2}$$
 (8)

Introduction Lüscher's Method Probability Distribution Method

Conclusion and Outlook

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Application to Data

- $E \rightarrow p$, Dispersion relations. $p \rightarrow \delta(p)$, Lüscher's formula.
- Resonance parameters can then be extracted by Breit-Wigner formula

$$\delta(p) \approx Tan^{-1} \left(\frac{4p^2 + 4M_{\pi}^2 - M_{\sigma}^2}{M_{\sigma}\Gamma_{\sigma}} \right)$$
(7)

$$\phi(\kappa)~pprox~\pi\kappa^2$$

$$\phi(\kappa) \approx (-0.09937)\kappa^8 + (0.47809)\kappa^6 + (-0.62064)\kappa^4 + (3.38974)\kappa^2$$
 (8)

• Which *p*?, Lattice or Continuum Dispersion Relations?

Application to Data

۵

- $E \rightarrow p$, Dispersion relations. $p \rightarrow \delta(p)$, Lüscher's formula.
- Resonance parameters can then be extracted by Breit-Wigner formula

$$\delta(p) \approx Tan^{-1} \left(\frac{4p^2 + 4M_{\pi}^2 - M_{\sigma}^2}{M_{\sigma}\Gamma_{\sigma}} \right)$$
(7)

$$\phi(\kappa) \approx \pi \kappa^{2}$$

$$\phi(\kappa) \approx (-0.09937)\kappa^{8} + (0.47809)\kappa^{6}$$

$$+ (-0.62064)\kappa^{4} + (3.38974)\kappa^{2} \qquad (8)$$

Which p?, Lattice or Continuum Dispersion Relations?

Introduction Lüscher's Method Probability Distribution Method 000000000 000000

Application to Data

۲

- $E \rightarrow p$, Dispersion relations. $p \rightarrow \delta(p)$, Lüscher's formula.
- Resonance parameters can then be extracted by Breit-Wigner formula

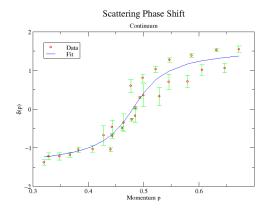
$$\delta(p) \approx Tan^{-1} \left(\frac{4p^2 + 4M_\pi^2 - M_\sigma^2}{M_\sigma \Gamma_\sigma} \right)$$
(7)

$$\phi(\kappa) \approx \pi \kappa^{2}$$

$$\phi(\kappa) \approx (-0.09937)\kappa^{8} + (0.47809)\kappa^{6}$$

$$+ (-0.62064)\kappa^{4} + (3.38974)\kappa^{2} \qquad (8)$$

• Which p?, Lattice or Continuum Dispersion Relations?

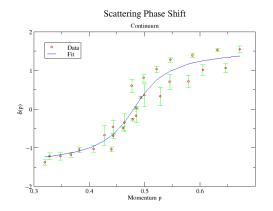

Lüscher's Method

Probability Distribution Method

Conclusion and Outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Continuum Relations

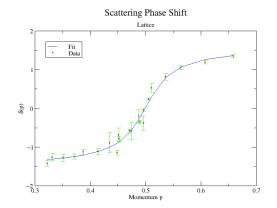

 Continuum Dispersion relations inaccurate, many points off the fit.

Lüscher's Method

Probability Distribution Method

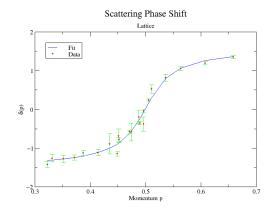
Conclusion and Outlook

Continuum Relations



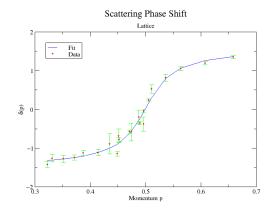
• Continuum Dispersion relations inaccurate, many points off the fit.

Introduction 00	Lüscher's Method ○○○○○●○○○	Probability Distribution Method	Conclusion and Outle
Lattice F	Relations		


look

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lattice dispersion relations: smaller errors and better fit.
Also supresses lattice effects.


Introduction 00	Lüscher's Method ○○○○○●○○○	Probability Distribution Method	Conclusion and Outlook
Lattice R	elations		

Lattice dispersion relations: smaller errors and better fit.
 Also supresses lattice effects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 00	Lüscher's Method ○○○○○●○○○	Probability Distribution Method	Conclusion and Outlook
Lattice R	Pelations		

• Lattice dispersion relations: smaller errors and better fit.

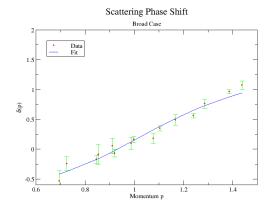
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Also supresses lattice effects.

Introd	tio	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results

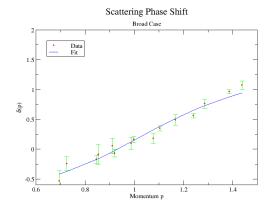

Results		
Parameters	$\phi(\kappa)$	$\pi\kappa^2$
$ u = 1.0, \ \lambda = 1.4 $	$M_{\sigma} = 1.35(2)$	$M_{\sigma} = 1.36(4)$
	$\Gamma_{\sigma} = 0.115(8)$	$\Gamma_{\sigma} = 0.17(2)$
$\nu = 1.0, \lambda = 4$	$M_{\sigma} = 2.03(2)$	$M_{\sigma} = 2.2(2)$
$\nu = 1.0, \ \lambda = 4$	$\Gamma_{\sigma} = 0.35(2)$	$\Gamma_{\sigma} = 0.42(5)$
$\nu = 1.0, \ \lambda = 200$	$M_{\sigma} = 3.1(7)$	$M_{\sigma}=3(1)$
$\nu = 1.0, \ \lambda = 200$	$\Gamma_{\sigma} = 1.2(5)$	$\Gamma_{\sigma}=2(1)$

 Introduction
 Lüscher's Method
 Probability Distribution Method

 00
 00000000
 00000

Conclusion and Outlook

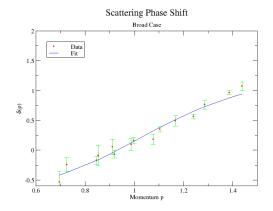
Broad Resonance



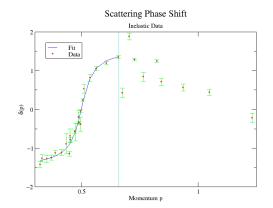
• Profile almost linear. High precision data needed.

 Unless number of energy levels is increased (larger volumes), less data in elastic region.

Conclusion and Outlook

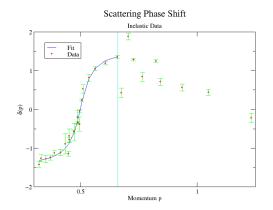

Broad Resonance

- Profile almost linear. High precision data needed.
- Unless number of energy levels is increased (larger volumes), less data in elastic region.


Conclusion and Outlook

Broad Resonance

- Profile almost linear. High precision data needed.
- Unless number of energy levels is increased (larger volumes), less data in elastic region.


Introduction 00	Lüscher's Method ○○○○○○○●	Probability Distribution Method	Conclusion and Outlook
Inelastic R	legion		

The formula cannot be extended to the inelastic region.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00	Lüscher's Method ○○○○○○○●	Probability Distribution Method	Conclusion and Outlook
Inelastic Re	gion		

• The formula cannot be extended to the inelastic region.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- An alternative method [Rusetsky et al. 2008] for analyzing resonances is the Histogram method.
- Here we construct a probability distribution W(p) W_{free}(p), the relative density of energy levels.
- Features of probability distribution should be related to resonance parameters as $N \to \infty$

$$C^{-1}W(p) - C_{free}^{-1}W_{free}(p) \approx \frac{1}{p} \left(\frac{\delta(p)}{p} - \delta'(p)\right)$$
(9)

- ロ ト - 4 回 ト - 4 □ - 4

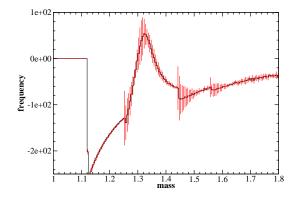
- An alternative method [Rusetsky et al. 2008] for analyzing resonances is the Histogram method.
- Here we construct a probability distribution $W(p) W_{free}(p)$, the relative density of energy levels.
- Features of probability distribution should be related to resonance parameters as $N \to \infty$

$$C^{-1}W(p) - C_{free}^{-1}W_{free}(p) \approx \frac{1}{p} \left(\frac{\delta(p)}{p} - \delta'(p)\right)$$
(9)

- An alternative method [Rusetsky et al. 2008] for analyzing resonances is the Histogram method.
- Here we construct a probability distribution $W(p) W_{free}(p)$, the relative density of energy levels.
- Features of probability distribution should be related to resonance parameters as $N \to \infty$

$$C^{-1}W(p) - C_{free}^{-1}W_{free}(p) \approx \frac{1}{p} \left(\frac{\delta(p)}{p} - \delta'(p)\right)$$
(9)

Lüscher's Method


Probability Distribution Method

Conclusion and Outlook

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Histogram

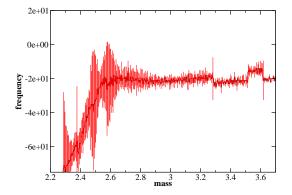
Lüscher's Method

Probability Distribution Method $\circ \circ \bullet \circ \circ$

Conclusion and Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Numerical Comparison


Results			
Parameters	Lüscher's Method	Histogram Method	
$\nu = 1.0, \ \lambda = 1.4$	$M_{\sigma} = 1.35(2)$	$M_{\sigma} = 1.33(5)$	
$\nu = 1.0, \ \lambda = 1.4$	$\Gamma_{\sigma}=0.115(8)$	$\Gamma_{\sigma}=0.10(5)$	
$\nu = 1.0, \lambda = 4$	$M_{\sigma} = 2.03(2)$	$M_{\sigma} = 2.01(2)$	
$\nu = 1.0, \ \lambda = 4$	$\Gamma_{\sigma} = 0.35(2)$	$\Gamma_{\sigma}=0.35(10)$	
$\nu = 1.0, \ \lambda = 200$	$M_{\sigma} = 3.1(7)$	$M_{\sigma} = N/A$	
$\nu = 1.0, \lambda = 200$	$\Gamma_{\sigma} = 1.2(5)$	$\Gamma_{\sigma} = N/A$	

Lüscher's Method

Probability Distribution Method $\circ \circ \circ \circ \circ$

Conclusion and Outlook

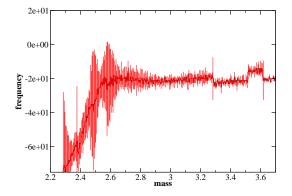
Histogram for Broad Resonance

The distribution is so flat that it has no obvious peak or width.
Needs higher precision and more energy levels.

・ロト ・聞ト ・ヨト ・ヨト

ж

Lüscher's Method

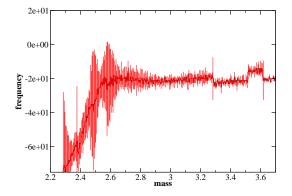

Probability Distribution Method $\circ \circ \circ \circ \circ$

Conclusion and Outlook

イロト 不得 トイヨト イヨト

э

Histogram for Broad Resonance


The distribution is so flat that it has no obvious peak or width.
 Needs higher precision and more energy levels

Lüscher's Method

Probability Distribution Method $\circ \circ \circ \circ \circ$

Conclusion and Outlook

Histogram for Broad Resonance

• The distribution is so flat that it has no obvious peak or width.

(日)、

э

• Needs higher precision and more energy levels.

- Both work well and produce similar results for narrow resonances.
- Lüscher's formula is less ambiguous, no problems with background.

- Errors clearer in Lüscher's formula.
- Difficulty with broad resonances for Histogram.

- Both work well and produce similar results for narrow resonances.
- Lüscher's formula is less ambiguous, no problems with background.

• Errors clearer in Lüscher's formula.

• Difficulty with broad resonances for Histogram.

- Both work well and produce similar results for narrow resonances.
- Lüscher's formula is less ambiguous, no problems with background.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Errors clearer in Lüscher's formula.

Difficulty with broad resonances for Histogram.

- Both work well and produce similar results for narrow resonances.
- Lüscher's formula is less ambiguous, no problems with background.
- Errors clearer in Lüscher's formula.
- Difficulty with broad resonances for Histogram.

Conclusions and Outlook

• Lüscher's formula seems to provide a more direct relation, less ambiguous.

• Does not apply in inelastic region however. Problem for QCD.

 Perhaps Histogram method will be useful for narrow resonances in the inelastic region.

Conclusions and Outlook

• Lüscher's formula seems to provide a more direct relation, less ambiguous.

• Does not apply in inelastic region however. Problem for QCD.

 Perhaps Histogram method will be useful for narrow resonances in the inelastic region.

Conclusions and Outlook

• Lüscher's formula seems to provide a more direct relation, less ambiguous.

• Does not apply in inelastic region however. Problem for QCD.

• Perhaps Histogram method will be useful for narrow resonances in the inelastic region.