Background	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	Results	Conclude
000	0	000	000000	00

Electromagnetic Splitting of Charged and Neutral Mesons

Aaron Torok

in collaboration with: Subhasish Basak, Claude Bernard, Elizabeth Freeland, Steven Gottlieb, and Guochun Shi

Department of Physics, Indiana University

June 17, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BACKGROUND	Dashen's Theorem	LATTICE IMPLEMENTATION	Results	Conclude
•00	0	000	000000	00

BACKGROUND

- Most lattice calculations done at $\alpha_{\text{EM}} = 0$, and $m_u = m_d$
- EM uncertainty in quark mass ratio from continuum estimates (MILC, arXiv:0903.3598v1):

$$m_u/m_d = 0.42(0)(1)(4)$$

- ► Lattice results for spectroscopy < 1% level
- ▶ some meson scattering length calculations at ~ 1% level
- bottom line: Need to include EM effects for high precision calculations

Previous studies:

- ► Duncan, et.al. (arXiv:hep-lat/9602005)
- ▶ Blum et. al. (arXiv:0708.0484v2,arXiv:1006.1311v1)
- ► MILC initial study Basak, et. al. (arXiv:0812.4486v1)

Background	Dashen's Theorem	LATTICE IMPLEMENTATION	Results	Conclude
○●○	0		000000	00

CHALLENGES

- cannot calculate π^0 mass without disconnected diagrams
- ► SxPT not developed until very recently (talk by Elizabeth Freeland at Lattice 2010 Tuesday)
- ► finite-volume corrections and lattice-spacing effects
- quenched photons
- dynamical studies: determinant re-weighting (Duncan, et.al, arXiv:hep-lat/9607032)
 fully dynamical (Blum, et.al, arXiv:0911.1348 [hep-lat])

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

BACKGROUND	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	Conclude
000	0	000	000000	00

THIS WORK

- MILC staggered, NF = 2 + 1, SU(3) gauge fields
- quenched U(1) fields generated separately
- calculated m_{π^+} , m_{K^+} , m_{K^0} , $m_{u\bar{u}}$, $m_{d\bar{d}}$
- also the ρ^+ (same issue with ρ^0 as π^0)
- electric charges ($e^2 = 4\pi\alpha$):

е	α
± 0.606	$4 lpha_{\sf phys}$
± 0.303	$\alpha_{\rm phys}$
0	0

- ➤ 7 valence quark masses on the MILC coarse (a = 0.12 fm) and fine ensembles (a = 0.09 fm),
- propagator inversion using GPU multi-mass inverter

BACKGROUND DASHE	N'S THEOREM LATTICE IMPLE	EMENTATION RESULTS	Conclude
000 •	000	000000	00

DASHEN'S THEOREM

•
$$\Delta M_D^2 = (\Delta M_K^2 - \Delta M_\pi^2)_{EM} = 0$$
 to $\mathcal{O}(\alpha)$:

$$\Delta M_D^2 = \left[m_{K^+}^2 - m_{K^0}^2
ight] - \left[m_{\pi^+}^2 - m_{\pi^0}^2
ight]$$
 $\Delta E_D = rac{m_{K^+}^2 - m_{K^0}^2}{m_{\pi^+}^2 - m_{\pi^0}^2} - 1$

► PQ χ PT (Bijnens, arXiv:0708.0484v2) ΔM^2 :

 $\Delta M^2 = \left[M^2(\chi_1, \chi_3, q_1, q_3) - M^2(\chi_1, \chi_3, q_3, q_3) \right] - \left[M^2(\chi_1, \chi_1, q_1, q_3) - M^2(\chi_1, \chi_1, q_3, q_3) \right]$

$$\Delta E = \frac{M^2(\chi_1, \chi_3, q_1, q_3) - M^2(\chi_1, \chi_3, q_3, q_3)}{M^2(\chi_1, \chi_1, q_1, q_3) - M^2(\chi_1, \chi_1, q_3, q_3)} - 1$$

 $\Delta M^2(m_u = m_d) \rightarrow (\Delta M_D^2)_{EM}$ up to very small EM corrections to m_{π^0}

GAUGE FIELDS

Quenched photon configurations generated with non-compact U(1) action (Duncan, et. al. arXiv:hep-lat/9602005v1,Blum, et. al., arXiv:0708.0484v2)

- ► gaussian distributed in momentum space
- ► U(1) Coulomb gauge fixed
- FFT \rightarrow coordinate space
- ► SU(3) × U(1) gauge fields, (SU(3) Coulomb gauge fixed also)
- quenched U(1): sea quarks have no EM charge, valence quarks (propagators) do

$$\begin{split} \mathbf{U}_{j,\mu} &= \hat{U}_{j,\mu} U_{j,\mu} \\ \hat{U}_{j,\mu} &\to \mathrm{SU}(3) \quad , \quad U_{j,\mu} \to \mathrm{U}(1) \end{split}$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Background	Dashen's Theorem	LATTICE IMPLEMENTATION $\odot \bullet \circ$	Results	Conclude
000	0		000000	00

STATISTICS

Initial study:

ensemble	m_l/m_s	a (fm)	cfgs	resource
l1648f21b6572m0097m0484	0.2	0.15	400	BigRed

Extension of the initial study:

ensemble	m_l/m_s	a (fm)	cfgs	resource
l2064f21b676m007m050	0.14	0.12	1261	AC
l2464f21b676m005m050	0.1	0.12	1274	Lincoln
l2896f21b709m0062m031	0.2	0.09	331	FNAL
l2896f21b711m0124m031	0.4	0.09	331	BigRed

 $\blacktriangleright m_{val} = 0.005, 0.007, 0.010, 0.020, 0.030, 0.040, 0.050$

 $\blacktriangleright m_{val} = 0.0031, 0.0062, 0.0093, 0.0124, 0.0155, 0.0186, 0.031$

NCSA

BACKGROUND	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	Conclude
000	0	000	000000	00

GPU INVERTER

MILC multi-mass inverter code ported by Guochun Shi to QUDA for NVIDIA GPUs (talk by Steve Gottlieb, Friday, Room3: 15:50 - 16:10)

Machine	t (h)	size	cpu cores	gpu	nodes	core-hr	node-hr
Big Red	13.3	$28^{3} \times 96$	32	none	8	426	106
jpsi at FNAL	7.8	$28^{3} \times 96$	1	S1070	1	7.8	7.8
jpsi at FNAL	0.8	$20^3 \times 64$	64	none	8	51.2	6.4
ac at NCSA	1.5	$20^3 \times 64$	1	S1070	1	1.5	1.5

- ▶ NVIDIA Tesla S1070 4 gpu per node, 4GB per gpu
- multi-gpu code would make this much better!
- ▶ factor of ~34 speed up for 1 core, ~4 for a node
- current code limited by cpu memory per node
- multi-gpu code \rightarrow huge speed-up per node

Background	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	Conclude
000	0	000	00000	00

OBTAINING MASS DIFFERENCES

► different U(1) gauge cfg for every SU(3) gauge cfg

- Average over $\pm e$ for each correlator per cfg
- single-elimination jackknife
- correlated fit to $A(e^{-mt} + e^{-m(T-t)})$
- form $\Delta M^2_{\text{meson}}$ from jackknifed masses

Background	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	Conclude
000	0	000	00000	00

Average over $\pm e$

Averaging over $\pm e$ in propagator calculation can cancel O(e) U(1) gauge field noise (Blum, et. al, arXiv:0708.0484v2, arXiv:1006.1311v1)

е	α
± 0.606	$4\alpha_{\rm phys}$
± 0.303	$\alpha_{\rm phys}$
0	0

$$U_{j,\mu} = e^{i\mathbf{q}\cdot\mathbf{e}A_{j,\mu}}$$
$$\mathbf{q} = \frac{2}{3}, -\frac{1}{2}$$

< □ ト < 団 ト < 三 ト < 三 ト < 三 ・ つへぐ</p>

Average over $\pm e$

Background	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	Conclude
000	0	000	00000	00

MASS DIFFERENCE FROM e = 0

$$\Delta M^2 = \left[M^2(\chi_1, \chi_3, q_1, q_3) - M^2(\chi_1, \chi_3, q_3, q_3) \right] - \left[M^2(\chi_1, \chi_1, q_1, q_3) - M^2(\chi_1, \chi_1, q_3, q_3) \right]$$

$$\Delta M^2 = \left[M^2(\chi_1, \chi_3, q_1, q_3) - M^2(\chi_1, \chi_3, q_3, q_3) \right] - \left[M^2(\chi_1, \chi_1, q_1, q_3) - M^2(\chi_1, \chi_1, q_3, q_3) \right]$$

Background	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	Conclude
000	0	000	000000	00

$$\Delta E_{\rm EM} \equiv \frac{M^2(\chi_1, \chi_3, q_1, q_3) - M^2(\chi_1, \chi_3, q_3, q_3)}{M^2(\chi_1, \chi_1, q_1, q_3) - M^2(\chi_1, \chi_1, q_3, q_3)} - 1$$

000	0	000	000000	•0
000	0	000	000000	•0
Background	DASHEN'S THEOREM	LATTICE IMPLEMENTATION	RESULTS	CONCLUDE

CONCLUSION AND FUTURE WORK

- it appears from the plots that the result for Δ_E and/or ΔM^2 for physical masses & in the continuum limit will be well-controlled
- fit LEC's from PQ χ PT with S χ PT corrections
- we have the ρ data, analysis in progress
- staggered baryons
- effect on f_{π} and f_K
- ▶ generate dynamical SU(3)×U(1) gauge fields → changes fermion force calculation

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

BACKGROUND DASHEN'S THEOREM RESULTS CONCLUDE 0. Thanks to: and service and service and and the second Sugar Contract Strength and and the second Lattice 2010 Local Organizing committee **MILC** collaboration the NCSA, for their hospitality Ancae 2010