Ming Gong

University of Kentucky χ QCD Collaboration

Lattice 2010 June 17, 2010

-Outline

Outline 1 Introduction

2 Algorithms

- Overlap on Domain-wall
- Z₄ Grid Source
- Volume Dependence of Spectrum Weight
- Hybrid Spatial Boundary Condition
- Scattering States

3 Data Process

- Simulation Parameters
- Interpolation and States
- Wrap-around States
- The Fit Results
- Volume Dependence

Conclusion

Introduction

The Newly Discovered Mesons in the Charm Region

- Many candidates of tetraquark states are discovered recently.
- In the charm region: $D_{s0}(2317)$, X(3872), $Z^+(4430)$, ...
 - Tetraquarks or conventional mesons?
 Lattice QCD will tell ...

-Introduction

 $D^*_{s0}(2317)$

•
$$I(J^{P}) = 0(0^{+})$$

• Mass = 2317.8 ± 0.6*MeV*
• Decay to: $D_{s}\pi$, $D_{s}\gamma$, ...

-Algorithms

Overlap on Domain-wall

Valence overlap fermions on 2+1 flavor domain wall fermion configurations

- Chiral symmetry
- Small $O(a^2)$ and $O(m^2a^2)$ errors
- Accelerated with Deflation and HYP smearing algorithm
- Accelerated with Multi-mass algorithm

Table: Speedup comparison of inversion¹

		$16^3 x32$			24 ³ x64			32 ³ x64		
	residue	w/o D	D	D+S	w/o D	D	D+S	w/o D	D	D+S
lowmode	10^{-8}	0	200	200	0	200	200	0	400	400
inner iter	10^{-11}	340	321	108	344	341	107	309	281	101
outer iter	10^{-8}	627	72	85	2931	147	184	4028	132	156
overhead				5 pro			5 pro			6 pro
speed up				23			51			79

¹A. Li et al., arXiv1005.5424v1

-Algorithms

└_Z₄ Grid Source

Z₄ Grid Source

- Grid: To increase the statistics.
- The grid spacing is set to 8
- Z₄ noise: To eliminate the contaminations.
- Use forward propagators for anti-quarks:

$$oldsymbol{D}^{-1}\eta = \left(oldsymbol{D}^{\dagger-1}\eta^*
ight)^{*, T_{oldsymbol{d}}, T_{oldsymbol{d}}}$$

-Algorithms

-Volume Dependence of Spectrum Weight

The volume dependence of spectrum weight

- For point source and summed point sink: ²
 - One-particle and two-particle states can be distinguished with the volume dependence :

$$\boldsymbol{C}^{1\boldsymbol{p}}(t) = \frac{\boldsymbol{M}^2}{2\boldsymbol{E}}\boldsymbol{e}^{-\boldsymbol{E}t}$$

$$C^{2p}(t) = \frac{M_1^2 M_2^2}{4V E_1 E_2} e^{-(E_1 + E_2)t}$$

 But for summation of a set of states, The volume dependence depends on the structure of the energy levels.

²N. Mathur et al., Phys. Rev. D76 (2007) 114505.

-Algorithms

-Hybrid Spatial Boundary Condition

Hybrid spatial boundary condition³

- With point source, the possible "quark momenta" on every dimension are :
 - With periodic spatial boundary condition:

$$0, \pm \frac{2\pi}{I}, \pm \frac{4\pi}{I}, ...$$

With anti-periodic spatial boundary condition:

 $\pm \frac{\pi}{L}, \pm \frac{3\pi}{L}, ...$

- With hybrid spatial boundary condition:
 - The ground state of a tetraquark keeps zero momentum
 - The ground states of two scattering mesons have momenta of

 $(\pm \frac{\pi}{L}, \pm \frac{\pi}{L}, \pm \frac{\pi}{L})$

³H. Suganuma et al., Prog. Theor. Phys. Suppl. 168 (2007) 168.

-Algorithms

-Scattering States

Scattering states with all momenta

- + The scattering states: $E(p) = \sqrt{m^2 + p^2}$
- In charm region, the energy levels are dense.
- The effective masses of different scattering models.

We have to consider more scattering states with non-zero relative momenta in charm region.

- Data Process

-Simulation Parameters

Simulation parameters

- Configurations: RBC 2+1 flavor domain wall fermion configurations
- Lattice: $16^3 \times 32$ and $24^3 \times 64$, 1/a = 1.73(3) GeV
- $\blacksquare \approx 40$ configurations
- Quark mass: from 0.00140 to 0.90
 - In this case, we use $m_{u/d} = 0.0135 (m_{\pi} = 310 \text{MeV})$, $m_s = 0.067, m_c = 0.68$

- Data Process

-Interpolation and States

The interpolation field and states

- We use $\bar{c}\gamma_5 u\bar{u}\gamma_5 s$ for $D_{s0}(2317)$
- The correlation function may contain:
 - DK scattering states
 - **D**_s π scattering states
 - a possible tetraquark state
 - other higher states ...

Both the scattering states dominate the correlation function

- The effective mass with the hybrid spatial boundary condition is evidently larger than the one with the ordinary boundary condition
- Fitting with only *DK* scattering states is not successful
- Fitting result with both *DK* and $D_{s\pi}$ scattering states is reasonable

- Data Process

-Wrap-around States

Wrap-around States

Data Process

- The Fit Results

The assumption

The assumption in this model:

- The matrix elements in the spectrum weight and the energy shifts are not very sensitive to momenta
 - + Several low-lying states dominate the correlation function
 - It will be checked and improved with open-jaw diagram calculations
- The spectrum weight of $D_s\pi$ and DK states are nearly same
 - + The fit results are not sensitive to the ratio of $D_s \pi$ and DK states
 - + The ratio can be calculated with open-jaw diagram
- The spectrum weight of the normal states and the wrap-around states are the same
 - + The interaction of the two scattering meson is assumed weak

- Data Process

└─ The Fit Results

The fitting model

The fitting model is :

$$\mathcal{C}(t) = \mathcal{C}_{D_{\mathcal{S}}\pi}(t) + \mathcal{C}_{D\mathcal{K}}(t) + \mathcal{C}_{D_{\mathcal{S}}\pi}^{wrap}(t) + \mathcal{C}_{D\mathcal{K}}^{wrap}(t) + \mathcal{C}_{\mathcal{T}}(t)$$

- with

$$C_{AB} = W \sum_{p} \frac{e^{-(E_A(p)+E_B(-p)+\Delta E)t}}{E_A(p)E_B(-p)} + (t \leftrightarrow T - t)$$

$$C_{AB}^{wrap} = W \sum_{p} \frac{e^{-E_A(p)t-E_B(-p)(T-t)}}{E_A(p)E_B(-p)} + (t \leftrightarrow T - t)$$

$$C_T(t) = W e^{-E't}$$

$$E(p) = \sqrt{m^2 + p^2}$$
with ordinary bondary condition: $p = \frac{2k\pi}{L} (k = 0, 1, 2, ...)$
with hybrid bondary condition: $p = \frac{(2k-1)\pi}{L} (k = 0, 1, 2, ...)$

- Data Process

L The Fit Results

The fit results

	χ^2/DOF	ΔE	W	E'	W'
16 P	0.463	0.39934×10^{-2}	0.10712×10^{-6}	$0.22639 \times 10^{+1}$	0.18320^{-3}
		$\pm 0.63615 \times 10^{-2}$	$\pm 0.63315 \times 10^{-8}$	$\pm 0.27234 \times 10^{-1}$	$\pm 0.23682 \times 10^{-4}$
16 H	1.074	0.36784×10^{-2}	0.20188×10^{-6}	$0.22328 \times 10^{+1}$	0.17110^{-3}
		$\pm 0.64329 \times 10^{-2}$	$\pm 0.13729 \times 10^{-8}$	$\pm 0.88999 \times 10^{-1}$	$\pm 0.82404 \times 10^{-4}$
24 P	1.264	-0.18854×10^{-2}	0.17442×10^{-6}	$0.21837 \times 10^{+1}$	0.28339^{-3}
		$\pm 0.39254 \times 10^{-2}$	$\pm 0.67182 \times 10^{-8}$	$\pm 0.26734 \times 10^{-1}$	$\pm 0.32372 \times 10^{-4}$
24 H	0.946	-0.71741×10^{-2}	0.18695×10^{-6}	$0.22663 \times 10^{+1}$	0.36241^{-3}
		$\pm 0.40762 \times 10^{-2}$	$\pm 0.85325 \times 10^{-8}$	$\pm 0.85423 \times 10^{-1}$	$\pm 0.16591 \times 10^{-3}$

-Data Process

-Volume Dependence

Volume Dependence of Correlation function

The volume dependence is very complex in the case.

- We have many states with different spectrum weights and energies.
- The volume dependence also depends on the interaction of scattering mesons.

-Conclusion

The result from conventional meson spectrum Calculation ⁴

⁴S.J. Dong et al., arXiv:0911.0868v2

-Conclusion

Conclusion

- We did not find a tetraquark state for $D_{s0}(2317)$.
- The result agree with a previous study on the nature of D_{s0}(2317)
- Volume dependence method is not fit for this case
- For further study:
 - The open-jaw diagram can be studied and the ratios of the spectrum weights and △*E*s can be extracted.
 - With △*E* available, scattering length and phase shift can be calculated.
 - The charmonium-like states (X(3872), Z⁺(4430), ...) can be studied with similar method.

Study on the newly discovered mesons in the charm region with chiral fermions.								
Conclusion								
	Thank you I							
	····································	DI						