Numerical properties of overlap staggered fermions

Philippe de Forcrand

ETH Zürich and CERN

with Aleksi Kurkela \& Marco Panero

inspired by David Adams

ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Motivation

Most large-scale LQCD projects use [improved] staggered fermions: they are cheap to simulate

BUT

- $N_{f}=4$ continuum tastes, with $O\left(a^{2}\right)$ taste-symmetry breaking \Longrightarrow take $\sqrt{\text { det }}$ non-local ?
- No quartet of low-lying eigenvalues \leftrightarrow no index theorem

> Rescued by David Adams (0912.2850 \& LAT10)

Construction

- Index from flow of eigenvalues of $H(m)=\gamma_{5}(D+m)=\gamma_{5} D+m \gamma_{5}$
- Topology comes from gluon field, ie. taste-singlet
\Longrightarrow Need taste-singlet γ_{5}, at least for mass term $\rightarrow \Gamma_{5}$

$$
H(m)=\gamma_{5} D_{s t}+m \Gamma_{5}
$$

$D_{s t}=\frac{1}{2} \sum_{\mu} \eta_{\mu}(x)\left(U_{\mu}(x)-U_{\mu}^{\dagger}(x-\hat{\mu})\right)$
$\gamma_{5}=(-)^{x+y+z+t}, \quad \Gamma_{5}=\Pi_{4} \eta_{\mu} \times \sum 4$-link transporters

Adams

Neuberger

More eigenvalue flows

- Cold configuration: agreement with analytic result

- $\beta=6.0$: eigenvalue gap closes, but $\left|m_{0}\right|$ can be arbit. large in Adams

Overlap staggered fermions

- Just like Neuberger: $D_{\text {sov }}=1+\gamma_{5} \operatorname{sign}\left(H\left(-m_{0}\right)\right)$
with $\gamma_{5}=(-)^{x+y+z+t} \quad\left(\right.$ need $\left.\gamma_{5}^{2}=1\right)$
- Potential advantages:
- cheaper (4 times fewer d.o.f. per site)
- more robust (| $m_{0} \mid$ can be arbitrarily large)

$$
\text { And reduces } N_{f}=4 \text { to } N_{f}=2 \text { tastes. }
$$

Free field: $U_{\mu}(x)=\mathbf{1} \forall \mathbf{x}, \mu$

Spectrum of kernel: $\gamma_{5} H_{W}\left(m_{0}=-1\right)$ and $\gamma_{5} H_{\text {Adams }}\left(m_{0}=-1\right)$

$\gamma_{5} \operatorname{sign}(H)=\frac{D}{\sqrt{D^{\dagger} D}}$ projects eigenvalues of $D=\gamma_{5} H$ on unit circle
Adams: two low-p eigenmodes projected to -1 , two projected to $+1 \Rightarrow N_{f}=2$

Free field: from $N_{f}=4$ to $N_{f}=2$

Kernel: $\gamma_{5} H_{\text {Adams }}\left(-m_{0}\right)=\emptyset_{s t}-m_{0} \gamma_{5} \Gamma_{5}$
Low-momentum (up to π / a) $\rightarrow \emptyset_{s t} \tilde{\Psi} \approx 0$
And $\left\langle\tilde{\psi}\left(-m_{0} \gamma_{5} \Gamma_{5}\right) \tilde{\psi}\right\rangle \approx-1\left(N_{f}=2\right.$ physical modes $)$

$$
\text { or } \left.+1 \text { (} N_{f}=2 \text { doublers }\right)
$$

So that $\left\langle\tilde{\psi}\left(1+\gamma_{5} \operatorname{sign}\left(H_{\text {Adams }}\right)\right) \tilde{\Psi}\right\rangle \approx 0\left(N_{f}=2\right.$ physical modes $)$ or +2 ($N_{f}=2$ doublers)

Locality of operator?

$\operatorname{Max}_{y}\left|M_{x y}\right|$ versus $|x-y|$ (Manhattan distance)

Adams

Neuberger

Adams comparable to Neuberger although kernel less local (4-link)

Locality of operator?

$\operatorname{Max}_{y}\left|M_{x y}\right|$ versus $|x-y|$ (Manhattan distance)
cf. hep-lat/9808010

Both, $\beta=6.0$

Adams comparable to Neuberger although kernel less local (4-link)

Cost of applying operator

- Multiplication by D : about 2 times faster for Adams (no Dirac indices)
- Sign (H) [using CG, no deflation]:
- about 8 times faster for Adams on easy cases
- about 2-3 times faster on hard cases

A lot of room for optimization of m_{0} in Adams' operator: not exploited yet
Also:
improved kinetic operator, link smearing (kinetic and/or mass), deflation, preconditioning, ...

Cost of inversion: compare with Neuberger

Apples with apples:

- same gauge field ($12^{4}, \beta=6.0$)
- same basic algorithm (CG inner, CG outer)

Adams versus Neuberger

Outer CG iter.

MxV

CPU

First application: comparison with RMT

Level spacing densities (dist. of unfolded eigenvalue spacing) $\beta=0 \mathrm{Y}-\mathrm{M}, 4^{4}$ lattice
parameter-free curve for ensemble with given symmetry

Same as standard staggered (cf 0804.3929), but should change as $\beta \rightarrow \infty$

Conclusions

- Works as advertised: $N_{f}=2 \rightarrow$ no more evil rooting!
- Sound approach to chiral \& continuum limits

Compare with Wilson \& Wilson-based (Neuberger, Domain-wall)

- How efficient? - cheaper than Neuberger
- but not dramatically so yet
- optimization (esp. m_{0})
- Only a dream?
zero-modes are chiral, and localized on even (or odd) sites
\rightarrow couple gauge fields to left-handed modes only?

Backup slide: optimization of m_{0} (preliminary)

Solve $\left[m_{q}+m_{0}\left(1+\gamma_{5} \operatorname{sign}\left(H\left(-m_{0}\right)\right)\right)\right] X=\delta_{x_{0}}$ with $m_{q}=0.1$ fixed, vary m_{0}

CG iter.

MxV

Backup slide: where are the physical d.o.f.?

The overlap operator splits the $N_{f}=4$ tastes into $N_{f}=2$ with mass ≈ 0 and $N_{f}=2$ with mass $\approx 2 / a$

Where are the light and heavy d.o.f. ?

Take $\left|m_{0}\right|$ very large: kinetic operator is $\frac{1}{m_{0}}$ perturbation of mass operator

- Mass operator Γ_{5} is block-diagonal (8 blocks):

4-link transporter \Rightarrow parities of (x, y, z, t) all changed

- Leading-order perturbation: at most one application of kinetic operator \varnothing
- (Any nb. of Γ_{5} 4-hops + at most one \varnothing s single-hop) \rightarrow bipartite lattice

