Numerical properties of overlap staggered fermions

Philippe de Forcrand ETH Zürich and CERN

with Aleksi Kurkela & Marco Panero

inspired by David Adams

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation

Most large-scale LQCD projects use [improved] staggered fermions: they are cheap to simulate

BUT

• $N_f = 4$ continuum *tastes*, with $O(a^2)$ taste-symmetry breaking \implies take $\sqrt{\det}$ non-local ?

• No quartet of low-lying eigenvalues $\ \leftrightarrow$ no index theorem

Rescued by David Adams (0912.2850 & LAT10)

Construction

- Index from flow of eigenvalues of $H(m) = \gamma_5(\not D + m) = \gamma_5 \not D + m \gamma_5$
- Topology comes from gluon field, ie. taste-singlet
 - \implies Need taste-singlet γ_5 , at least for mass term $\rightarrow \Gamma_5$

 $H(m) = \gamma_5 D_{st} + m\Gamma_5$

$$\begin{split} D_{st} &= \frac{1}{2} \sum_{\mu} \eta_{\mu}(x) (U_{\mu}(x) - U_{\mu}^{\dagger}(x - \hat{\mu})) \\ \gamma_{5} &= (-)^{x+y+z+t}, \quad \Gamma_{5} = \prod_{4} \eta_{\mu} \times \sum \text{4-link transporters} \end{split}$$

More eigenvalue flows

• Cold configuration: agreement with analytic result

• $\beta = 6.0$: eigenvalue gap closes, but $|m_0|$ can be *arbit. large* in Adams

Overlap staggered fermions

• Just like Neuberger: $D_{sov} = 1 + \gamma_5 \text{sign}(H(-m_0))$

with
$$\gamma_5 = (-)^{x+y+z+t}$$
 (need $\gamma_5^2 = 1$)

- Potential advantages:
 - cheaper (4 times fewer d.o.f. per site)
 - more robust ($|m_0|$ can be arbitrarily large)

And reduces
$$N_f = 4$$
 to $N_f = 2$ tastes.

Free field: $U_{\mu}(x) = \mathbf{1} \ \forall \mathbf{x}, \mu$

Spectrum of kernel: $\gamma_5 H_W(m_0 = -1)$ and $\gamma_5 H_{Adams}(m_0 = -1)$

 $\gamma_5 \text{sign}(H) = \frac{D}{\sqrt{D^{\dagger}D}}$ projects eigenvalues of $D = \gamma_5 H$ on unit circle

Adams: two low-*p* eigenmodes projected to -1, two projected to $+1 \Rightarrow N_f = 2$

Free field: from $N_f = 4$ to $N_f = 2$

Kernel: $\gamma_5 H_{Adams}(-m_0) = \not D_{st} - m_0 \gamma_5 \Gamma_5$

Low-momentum (up to π/a) $o
ot\!\!/ s_t ilde{\psi} pprox 0$

And $\langle \tilde{\psi}(-m_0\gamma_5\Gamma_5)\tilde{\psi}\rangle \approx -1$ ($N_f = 2$ physical modes) or +1 ($N_f = 2$ doublers)

So that $\langle \tilde{\psi}(1 + \gamma_5 \operatorname{sign}(H_{Adams}))\tilde{\psi} \rangle \approx 0$ ($N_f = 2$ physical modes) or +2 ($N_f = 2$ doublers)

Adams comparable to Neuberger although kernel less local (4-link)

Locality of operator?

 $Max_y | M_{xy} |$ versus |x - y| (Manhattan distance) cf. hep-lat/9808010

Adams comparable to Neuberger although kernel less local (4-link)

Cost of applying operator

- Multiplication by D: about 2 times faster for Adams (no Dirac indices)
- Sign(*H*) [using CG, no deflation]:
 - about 8 times faster for Adams on easy cases
 - about 2-3 times faster on hard cases

A lot of room for optimization of m_0 in Adams' operator: not exploited yet

Also:

improved kinetic operator, link smearing (kinetic and/or mass), deflation, preconditioning, ...

Cost of inversion: compare with Neuberger

Apples with apples:

- same gauge field (12⁴, $\beta = 6.0$)
- same basic algorithm (CG inner, CG outer)

Adams versus Neuberger

First application: comparison with RMT

Level spacing densities (dist. of unfolded eigenvalue spacing) $\beta=0$ Y-M, 4⁴ lattice parameter-free curve for ensemble with given symmetry

Same as standard staggered (cf 0804.3929), but should change as $\beta \rightarrow \infty$

Ph. de Forcrand

Conclusions

- Works as advertised: $N_f = 2 \rightarrow$ no more evil rooting!
- Sound approach to chiral & continuum limits

Compare with Wilson & Wilson-based (Neuberger, Domain-wall)

- How efficient? cheaper than Neuberger
 - but not dramatically so yet
 - optimization (esp. m₀)
- Only a dream?

zero-modes are chiral, and localized on even (or odd) sites

ightarrow couple gauge fields to left-handed modes only ?

Backup slide: optimization of m_0 (preliminary)

Solve $[m_q + m_0(1 + \gamma_5 \text{sign}(H(-m_0)))] X = \delta_{x_0}$ with $m_q = 0.1$ fixed, vary m_0

Backup slide: where are the physical d.o.f.?

The overlap operator splits the $N_f = 4$ tastes into

 $N_f = 2$ with mass ≈ 0 and $N_f = 2$ with mass $\approx 2/a$

Where are the light and heavy d.o.f. ?

Take $|m_0|$ very large: kinetic operator is $\frac{1}{m_0}$ perturbation of mass operator

• Mass operator Γ_5 is block-diagonal (8 blocks): 4-link transporter \Rightarrow parities of (x, y, z, t) all changed

Leading-order perturbation: at most one application of kinetic operator otin

• (Any nb. of Γ_5 4-hops + at most one \not{D} single-hop) \rightarrow bipartite lattice