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Motivation

Most large-scale LQCD projects use [improved] staggered fermions :
they are cheap to simulate

BUT

• Nf = 4 continuum tastes, with O (a2) taste-symmetry breaking
=⇒ take

√
det non-local ?

• No quartet of low-lying eigenvalues ↔ no index theorem

Rescued by David Adams (0912.2850 & LAT10)
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Construction

• Index from flow of eigenvalues of H(m) = γ5(D/ +m) = γ5D/ +mγ5

• Topology comes from gluon field, ie. taste-singlet
=⇒ Need taste-singlet γ5, at least for mass term → Γ5

H(m) = γ5Dst +mΓ5

Dst =
1
2 ∑µηµ(x)(Uµ(x)−U†

µ(x − µ̂))

γ5 = (−)x+y+z+t , Γ5 = ∏4 ηµ×∑ 4-link transporters
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More eigenvalue flows

• Cold configuration: agreement with analytic result
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• β = 6.0: eigenvalue gap closes, but |m0| can be arbit. large in Adams
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Overlap staggered fermions

• Just like Neuberger: Dsov = 1+ γ5sign(H(−m0))

with γ5 = (−)x+y+z+t (need γ2
5 = 1)

• Potential advantages:

- cheaper (4 times fewer d.o.f. per site)

- more robust (|m0| can be arbitrarily large)

And reduces Nf = 4 to Nf = 2 tastes.
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Free field: Uµ(x) = 1 ∀x,µ

Spectrum of kernel: γ5HW (m0 =−1) and γ5HAdams(m0 =−1)
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γ5sign(H) = D√
D†D

projects eigenvalues of D = γ5H on unit circle

Adams: two low-p eigenmodes projected to -1, two projected to +1 ⇒ Nf = 2
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Free field: from Nf = 4 to Nf = 2

Kernel: γ5HAdams(−m0) = D/ st−m0γ5Γ5

Low-momentum (up to π/a) → D/ st ψ̃ ≈ 0

And 〈ψ̃(−m0γ5Γ5)ψ̃〉 ≈ −1 (Nf = 2 physical modes)
or +1 (Nf = 2 doublers)
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So that 〈ψ̃(1+ γ5sign(HAdams))ψ̃〉 ≈ 0 (Nf = 2 physical modes)
or +2 (Nf = 2 doublers)
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Locality of operator?

Maxy |Mxy | versus |x − y | (Manhattan distance) cf. hep-lat/9808010
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Locality of operator?

Maxy |Mxy | versus |x − y | (Manhattan distance) cf. hep-lat/9808010

Both, cold Both, β = 6.0
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Cost of applying operator

• Multiplication by D: about 2 times faster for Adams (no Dirac indices)

• Sign(H) [using CG, no deflation]:
- about 8 times faster for Adams on easy cases
- about 2-3 times faster on hard cases

A lot of room for optimization of m0 in Adams’ operator: not exploited yet

Also:
improved kinetic operator, link smearing (kinetic and/or mass),
deflation, preconditioning, ...
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Cost of inversion: compare with Neuberger

Apples with apples:
- same gauge field (124,β = 6.0)
- same basic algorithm (CG inner, CG outer)

Adams versus Neuberger
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First application: comparison with RMT

Level spacing densities (dist. of unfolded eigenvalue spacing)
β = 0 Y-M, 44 lattice
parameter-free curve for ensemble with given symmetry
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Same as standard staggered (cf 0804.3929), but should change as β → ∞
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Conclusions

• Works as advertised: Nf = 2 → no more evil rooting!

• Sound approach to chiral & continuum limits

Compare with Wilson & Wilson-based (Neuberger, Domain-wall)

• How efficient? - cheaper than Neuberger
- but not dramatically so yet
- optimization (esp. m0)

• Only a dream?
zero-modes are chiral, and localized on even (or odd) sites
→ couple gauge fields to left-handed modes only ?

Ph. de Forcrand LAT10, June 2010 Staggered overlap fermions
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Backup slide: optimization of m0 (preliminary)

Solve [mq +m0(1+ γ5sign(H(−m0)))]X = δx0 with mq = 0.1 fixed, vary m0
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Backup slide: where are the physical d.o.f.?

The overlap operator splits the Nf = 4 tastes into
Nf = 2 with mass ≈ 0 and Nf = 2 with mass ≈ 2/a

Where are the light and heavy d.o.f. ?

Take |m0| very large: kinetic operator is 1
m0

perturbation of mass operator

• Mass operator Γ5 is block-diagonal (8 blocks):
4-link transporter ⇒ parities of (x ,y ,z, t) all changed

• Leading-order perturbation: at most one application of kinetic operator D/

• (Any nb. of Γ5 4-hops + at most one D/ single-hop) → bipartite lattice
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