Exact lattice supersymmetry and AdS/CFT

Simon Catterall
Syracuse University
June 15, 2010

Introduction - motivation, problems, solutions

Twisted supersymmetric lattices $-\mathcal{N}=4 \mathrm{YM}$

Numerical aspects

Applications to AdS/CFT

Incomplete list of recent work

- $\mathcal{N}=1$ SYM - Wilson: Demmouche at al. arXiv:1003.2073
- $\mathcal{N}=1$ SYM - DWF: Endres arXiv:0902.4267, Giedt et al. arXiv:0810.5746
- Wess-Zumino model using overlap fermions, Giedt et al. arXiv:1005.3276
- 2D $\mathcal{N}=(2,2)$ SQCD using GW fermions, Sugino, Kikukawa et al. arXiv:0903.5398,0811.0916,0807.2683
- Momentum space approach to lattice $\mathcal{N}=2$ QM with full SUSY D‘Adda et al. arXiv:1006.2046
- $\mathcal{N}=4$ SYM using SUSY lattices: Catterall et al.arXiv:0903.4881,0909.4947,0811.1203,0803.4273
Note: numerical studies using non lattice methods discussed last year by Nishimura.

Motivation for lattice SUSY

- Rigorous definition of SUSY QFT - like lattice QCD.
- Understand dynamical SUSY breaking. SQCD - predicting soft terms in MSSM ...
- AdS/CFT: Connection between strongly coupled Yang-Mills and (quantum) gravity. Lattice allows:
- Strong coupling calculations
- Monte Carlo simulations
- Geometry from gauge theory ?

Lattice SUSY - problems

- SUSY extends Poincaré - broken by discretization. $\{Q, \bar{Q}\}=\gamma . p$. No p.
- Folklore: Impossible to put SUSY on lattice exactly.
- Leads to (very) difficult fine tuning - lots of relevant SUSY breaking counterterms...
Way out?

Options

- Let SUSY emerge as accidental symmetry in continuum limit
- Limited possibilities: eg. $\mathcal{N}=1$ SYM: Only relevant SUSY breaking op. is gaugino mass
- Tune bare mass (Wilson) or protect with exact chiral symmetry (DWF) - SUSY in chiral continuum limit.
- SQCD: Using GW fermions with fine tuning of scalar sector (Giedt et al.). Hard - future ...
Or preserve some SUSY exactly in lattice theory

Exact SUSY - new ideas

- Topological twisting (S.C, F. Sugino, N. Kawamoto, A. d'Adda, P. Damgaard, S. Matsuura, J. Giedt, ..)
- Orbifolding/deconstruction (D. B. Kaplan, M. Ünsal, A. Cohen, P.Damgaard, S. Matsuura, J. Giedt, ...)

Two approaches produce identical lattice theories!
Phys Rep. 484:71-130,2009, arXiv:0903.4881

- Focus on former. Emphasizes geometry.
- Warning: Approaches work only if \mathcal{Q} multiple of 2^{D}

$$
\text { In } D=4 \text { unique theory: } \mathcal{N}=4 \mathrm{SYM}
$$

Twisted $\mathcal{N}=4$ lattice theory

\[

\]

- Fields live on links of A_{4}^{*} lattice - 5 basis vectors correspond to vectors from center of hypertetrahedron to vertices.
- $\eta x \rightarrow x$
- $\psi_{a} \quad x \rightarrow x+\mu_{a}$
- $\chi_{a b} \quad x+\mu_{a}+\mu_{b} \rightarrow x$
- All fields transform like links: $X_{p} \rightarrow G(x) X_{p} G^{\dagger}(x+p)$
- Single exact lattice SUSY $\mathcal{Q}^{2}=0$

Where did this come from?

- Basic idea: twisted theory formulated in terms of fields transforming under $G=\operatorname{Diag}\left(S O_{\text {Lorentz }}(4) \times S O_{\mathrm{R}}(4)\right)$
- Point group symmetry A_{4}^{*} subgroup twisted rotations G.
- Fermions: spinors under both factors - become integer spin after twisting.
- Scalars transform as vectors under R-symmetry - vectors after twisting.
- Gauge fields remain vectors - combine with scalars to make complex gauge fields. $\mathcal{U}=e^{A+i \phi}$
- Still only $U(N)$ gauge symmetry.

Important: flat space: just a change of variable

Lattice SUSY

Important: twisted action takes \mathcal{Q}-exact form $S=\mathcal{Q} \wedge$ ($+\mathcal{Q}$-closed)

$$
\begin{aligned}
\mathcal{Q} \mathcal{U}_{a} & =\psi_{a} \\
\mathcal{Q} \psi_{a} & =0 \\
\mathcal{Q} \overline{\mathcal{U}}_{a} & =0 \\
\mathcal{Q} \chi_{a b} & =-\overline{\mathcal{F}}_{a b} \\
\mathcal{Q} \eta & =d \\
\mathcal{Q} d & =0
\end{aligned}
$$

Note: complexified gauge link: $\mathcal{U}_{a}(x)$
field strength: $\mathcal{F}_{a b}(x)=\mathcal{U}_{a}(x) \mathcal{U}_{b}(x+a)-\mathcal{U}_{b}(x) \mathcal{U}_{a}(x+b)$

Lattice action

$$
\begin{aligned}
& S=\beta\left(S_{1}+S_{2}\right) \\
& S_{1}=\sum_{\mathbf{x}} \operatorname{Tr}\left(\alpha_{1} \mathcal{F}_{a b}^{\dagger} \mathcal{F}_{a b}+\frac{\alpha_{2}^{2}}{2 \alpha_{1}}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}\right)^{2}\right. \\
&\left.-\alpha_{1} \chi_{a b} \mathcal{D}_{[a}^{(+)} \psi_{b]}-\alpha_{2} \eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}\right) \\
& S_{2}=-\frac{\alpha_{3}}{8} \sum_{\mathbf{x}} \operatorname{Tr} \epsilon_{a b c d e} \chi_{d e}\left(\mathbf{x}+\mu_{a}+\mu_{b}+\mu_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi\left(\mathbf{x}+\mu_{c}\right)
\end{aligned}
$$

- Bosonic action is just Wilson plaquette if $\mathcal{U}_{a}^{\dagger} \mathcal{U}_{a}=1$. Fermions: Kähler-Dirac action - no doublers.
- Well defined prescription for all difference ops.
- Classically $\alpha_{i}=1$.

More supersymmetric lattices

$$
\mathcal{Q}=2 D=2
$$

$\mathcal{Q}=8 \quad D=2,3$

Outstanding questions

Lattice theories are:

local, gauge invariant, doubler free and invariant under one SUSY
Two questions:

- Is rotational symmetry restored as $a \rightarrow 0$?
- What about restoration of full SUSY ?

Must understand how lattice theory renormalizes ...
Two approaches

- Examine at 1-loop using p. theory
- Attempt a non-perturbative tuning by measuring broken SUSY Ward identities

Renormalization

Lattice symmetries:

- Gauge invariance
- \mathcal{Q}-symmetry.
- Point group symmetry - eg. S^{5} for A_{4}^{*} - subgroup of $S O(4)^{\prime}$
- Exact fermionic shift symmetry $\eta \rightarrow \eta+\epsilon I$

Conclusion:

- Twisted $S O(4)^{\prime}$ restored in continuum limit.
- No mass terms can appear to all orders in perturbation theory! (Topological argument based on exact \mathcal{Q})
- Power counting: only relevant ops that can arise correspond to \log corrections to $\alpha_{i}, i=1 \ldots 3$.

Ingredients for perturbation theory

Lattice rules for A_{4}^{*} lattice (Feynman gauge):

- Boson propagator $<\overline{\mathcal{A}}_{a}^{C}(k) \mathcal{A}_{b}^{D}(-k)>=\frac{1}{\hat{k}^{2}} \delta_{a b} \delta^{C D}$ with $\hat{k}^{2}=4 \sum_{a} \sin ^{2}\left(k_{a} / 2\right)$
- Fermion propagator $M_{\mathrm{KD}}^{-1}(k)=\frac{1}{\hat{k}^{2}} M_{\mathrm{KD}}(k)$ with $M(k)$ a 16×16 block matrix acting on ($\eta, \psi_{a}, \chi_{a b}$)
- Vertices: $\psi \eta, \psi \chi$ and $\chi \chi$.
- Only 4 Feynman graphs needed to find 1-loop contributions to α_{i}. No tadpoles

Example: chi-chi propagator

Calc. underway - results soon ... (with Giedt, Joseph, Dzeimkowski)

Simulations

- Parallized, multiple time step RHMC code developed.
- Uses MDP libraries within FermiQCD for communication.

with J. Schneible

Divergent path integral ?

Infinite number classical vacua corresponding to constant diagonal matrices

$S U(2) P(\lambda)$ vs λ
no divergence scalars localized close to origin with power law tails caveat: still need to introduce mass for scalar trace mode

Sign problem ?

- Observed no significant sign problem with small volume simulations over most parameter range.
- In the case of periodic bcs we understand this:
$<e^{i \alpha(\operatorname{Pf}(M))}>_{\text {phase quenched }}=Z_{\text {unquenched }}$ But Z is a topological invariant - can be computed exactly at 1-loop where one finds $<e^{i \alpha}>=1$.

Bosonic Action

SUSY predicts: $\kappa S_{B}=\frac{9}{2}\left(N^{2}-1\right) V$

κ	κS_{B}	exact
1.0	$13.67(4)$	13.5
10.0	$13.52(2)$	13.5
100.0	$13.48(2)$	13.5

$$
D=0 S U(2)
$$

Gauge-gravity dualities

Original AdS/CFT correspondence:

$$
\text { Quantum } \mathcal{N}=4 \text { YM dual Semiclassical strings +D3-branes }
$$

Many other examples eg. Low temperature thermodyamics of dimensionally reduced theory

$$
\mathcal{N}=4 \text { SYM in } D=(p+1) \text { and Semiclassical black Dp-branes }
$$

Explore using lattice actions ...

Black holes from YM

$p=0$ case: black holes in type II SUGRA - dual to large N low T $\mathcal{N}=4$ on circle (with T .Wiseman, Imperial)

Energy vs temperature for SYMQM system+BH prediction using semiclassical Bekenstein-Hawking.

Single deconfined phase.

Black Strings

$p=1$ case: black string in type II SUGRA - dual to large N
$\mathcal{N}=4$ on 2D torus

- New possibility: If event horizon of black hole wraps spatial circle - black hole less stable than black string -Gregory-LaFlamme gravitational transition
- In dual gauge theory see thermal phase transition associated with spatial Polyakov line.
work with A. Joseph and T. Wiseman

Black hole-black string phase transition

$\frac{1}{N}|\operatorname{Tr} P|$ versus inverse temperature β on 2×8 lattice. Small β phase - 5D black hole Large β phase - 5D black string.

Prospects

- Exciting time for lattice SUSY - much activity, many developments. Plenty of opportunities; BSM physics for LHC, connections to strings.
- Lattice actions retaining some exact SUSY possible. Describe topologically twisted SYM continuum limit.
- Possibility for nonperturbative exploration $\mathcal{N}=4 \mathrm{YM}$. Tests of AdS/CFT.
- Dimensional reductions - duality between strings with Dp-branes and ($p+1$)-SYM eg. thermal D0/D1/D2 branes
- For $D=4$ theory Most pressing question - what residual (fine) tuning needed to get full SUSY as $a \rightarrow 0$?

