Hadron Structure and Form Factors

C. Alexandrou

University of Cyprus and Cyprus Institute

1010 The $x x v I I I$ International symposium on
 Lattice Field Theory

Outline

(1) Meson sector

- Pion form factor
- ρ-meson width
(2) Baryon sector
- Nucleon Generalized Parton Distributions - Definitions
- Lattice evaluation
- Results on nucleon form factors
- Results on nucleon moments
- N to Δ form factors
- Δ form factors and structure
(3) Conclusions

Pion form factor

Several Collaborations using dynamical quarks with pion masses down to about 300 MeV
ETMC, $N_{F}=2$, R. Frezzotti, V. Lubicz and S. Simula, PRD 79, 074506 (2009)

- Examine volume and cut-off effects \Rightarrow estimate continuum and infinite volume values
- Twisted boundary conditions to probe small $Q^{2}=-a^{2}$
- All-to-all propagators and 'one-end trick' to obtain accurate results
- Chiral extrapolation using NNLO

Parallel 25: $N_{f}=2$, Clover, H. Wittig; $N_{f}=2+1$, Overlap, T. Kaneko

Pion form factor

Several Collaborations using dynamical quarks with pion masses down to about 300 MeV ETMC, $N_{F}=2$, R. Frezzotti, V. Lubicz and S. Simula, PRD 79, 074506 (2009)

- Examine volume and cut-off effects \Rightarrow estimate continuum and infinite volume values
- Twisted boundary conditions to probe small $Q^{2}=-q^{2}$
- All-to-all propagators and 'one-end trick' to obtain accurate results
- Chiral extrapolation using NNLO $\rightarrow\left\langle r^{2}\right\rangle$ and $F_{\pi}\left(Q^{2}\right)=\left(1+\left\langle r^{2}\right\rangle Q^{2} / 6\right)^{-1}$

Parallel 25: $N_{f}=2$, Clover, H. Wittig; $N_{f}=2+1$, Overlap, T. Kaneko

Pion form factor

Several Collaborations using dynamical quarks with pion masses down to about 300 MeV
ETMC, $N_{F}=2$, R. Frezzotti, V. Lubicz and S. Simula, PRD 79, 074506 (2009)

- Examine volume and cut-off effects \Rightarrow estimate continuum and infinite volume values
- Twisted boundary conditions to probe small $Q^{2}=-q^{2}$
- All-to-all propagators and 'one-end trick' to obtain accurate results
- Chiral extrapolation using NNLO $\rightarrow\left\langle r^{2}\right\rangle$ and $F_{\pi}\left(Q^{2}\right)=\left(1+\left\langle r^{2}\right\rangle Q^{2} / 6\right)^{-1}$

ρ-meson width

- Consider $\pi^{+} \pi^{-}$in the $I=1$-channel
- Estimate P -wave scattering phase shift $\delta_{11}(k)$ using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{E\left(m_{R}^{2}-E^{2}\right)}, k=\sqrt{E^{2} / 4-m_{\pi}^{2}} \rightarrow$ determine M_{R} and $g_{\rho \pi \pi}$ and then extract $\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{R}^{3}}{m_{R}^{2}}, k_{R}=\sqrt{m_{R}^{2} / 4-m_{\pi}^{2}}$

$$
m_{\pi}=309 \mathrm{MeV}, L=2.8 \mathrm{fm}
$$

Parallel 21: $N_{F}=2$ twisted mass (ETMC), Xu Feng; $N_{F}=2+1$ Clover (PACS-CS), N. Ishizuka;
Parallel 50: $N_{F}=2+1$ Clover, J. Frison

ρ-meson width

- Consider $\pi^{+} \pi^{-}$in the $I=1$-channel
- Estimate P -wave scattering phase shift $\delta_{11}(k)$ using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{E\left(m_{R}^{2}-E^{2}\right)}, k=\sqrt{E^{2} / 4-m_{\pi}^{2}} \rightarrow$ determine M_{R} and $g_{\rho \pi \pi}$ and then extract $\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{R}^{3}}{m_{R}^{2}}, k_{R}=\sqrt{m_{R}^{2} / 4-m_{\pi}^{2}}$

$$
m_{\pi}=309 \mathrm{MeV}, L=2.8 \mathrm{fm}
$$

Parallel 21: $N_{F}=2$ twisted mass (ETMC), Xu Feng; $N_{F}=2+1$ Clover (PACS-CS), N. Ishizuka;
Parallel 50: $N_{F}=2+1$ Clover, J. Frison

Baryon sector

- Recent progress in hadron spectrum:

Evaluation of the mass spectrum of low lying baryons e.g BMW, ETMC, LHPC, CP-PACS Excited states using variational methods, e.g. JLab, Adelaide, Graz/Regensburg groups

Baryon sector

- Recent progress in hadron spectrum:

Evaluation of the mass spectrum of low lying baryons e.g BMW, ETMC, LHPC, CP-PACS Excited states using variational methods, e.g. JLab, Adelaide, Graz/Regensburg groups

- Characterization of nucleon structure is considered a milestone in hadronic physics \rightarrow many experiments have been carried out to measure form factors and structure functions.

Baryon sector

- Characterization of nucleon structure is considered a milestone in hadronic physics \rightarrow many experiments have been carried out to measure form factors and structure functions.

Experiments on nucleon FFs started in the 50s
New generation experiments using polarized beams and target are yielding high precision data spanning larger Q^{2} ranges.
\Rightarrow Nucleon form factors serve as a benchmark for Lattice QCD, enable us to predict others
They provide ideal probes of the charge and magnetization, determination of shape in analogy to e.g. deuteron and other nuclei
Non-relativistically $F\left(\vec{q}^{2}\right)=\int d^{3} x e^{-i \vec{q} \cdot \vec{x}}<\psi|\rho(\vec{x})| \psi>$.

Intrinsic charge density contours of a spin-zero nucleus showing deformation revealed through measurements of transition densities using electron scattering

Definition of Generalized Parton Distributions (GPDs)

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p^{\prime} and $p \rightarrow$ GPDs, X. Ji, J. Phys. G24 (1998) 1181

$$
F_{\mathrm{r}}\left(x, \xi, q^{2}\right)=\frac{1}{2} \int \frac{d \lambda}{2 \pi} e^{i \alpha \lambda}\left\langle p^{\prime}\right| \bar{\psi}(-\lambda n / 2) \Gamma \mathcal{P} e^{i g{ }^{i / 2} / 2^{\lambda / 2} d \alpha n \cdot A(n \alpha)} \psi(\lambda n / 2)|p\rangle
$$

where $q=p^{\prime}-p, \bar{P}=\left(p^{\prime}+p\right) / 2, n$ is a light-cone vector with and $\bar{P} . n=1$ and $\xi=-n \cdot q / 2$.

$$
\begin{aligned}
\Gamma=\pitchfork & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\hbar H\left(x, \xi, q^{2}\right)+i \frac{n_{\mu} q_{\nu} \sigma^{\mu \nu}}{2 m} E\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=\phi_{\gamma_{5}} & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not h_{\gamma} \tilde{H}\left(x, \xi, q^{2}\right)+\frac{n \cdot q_{\gamma_{5}}}{2 m} \tilde{E}\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=n_{\mu} \sigma^{\mu \nu} & \rightarrow \text { tensor GPDs }
\end{aligned}
$$

"Handbag" diagram

Expansion of the light cone operator leads to a tower of local twist-2 operators $\mathcal{O}^{\mu_{1} \cdots \mu_{n}}$, related to moments:

- Diagonal matrix element $\langle P| \mathcal{O}(x)|P\rangle$ (DIS) \rightarrow parton distributions: $q(x), \Delta q(x), \delta q(x)$

- Off-diagonal matrix elements (DVCS) \rightarrow generalized form factors

Definition of Generalized Parton Distributions (GPDs)

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p^{\prime} and $p \rightarrow$ GPDs, X. Ji, J. Phys. G24 (1998) 1181

$$
F_{\mathrm{r}}\left(x, \xi, q^{2}\right)=\frac{1}{2} \int \frac{d \lambda}{2 \pi} e^{i \alpha \lambda}\left\langle p^{\prime}\right| \bar{\psi}(-\lambda n / 2) \Gamma \mathcal{P} e^{i g / \lambda^{\lambda / 2} / 2^{\lambda n \cdot A(n \alpha)}} \psi(\lambda n / 2)|p\rangle
$$

where $q=p^{\prime}-p, \bar{P}=\left(p^{\prime}+p\right) / 2, n$ is a light-cone vector with and $\bar{P} . n=1$ and $\xi=-n \cdot q / 2$.

$$
\begin{aligned}
\Gamma=\not n & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not n H\left(x, \xi, q^{2}\right)+i \frac{n_{\mu} q_{\nu} \sigma^{\mu \nu}}{2 m} E\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=\not n \gamma_{5} & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not n \gamma_{5} \tilde{H}\left(x, \xi, q^{2}\right)+\frac{n \cdot q \gamma_{5}}{2 m} \tilde{E}\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=n_{\mu} \sigma^{\mu \nu} & \rightarrow \text { tensor GPDs }
\end{aligned}
$$

"Handbag" diagram

Expansion of the light cone operator leads to a tower of local twist-2 operators $\mathcal{O}^{\mu_{1}} \ldots \mu_{n}$, related to moments:

- Diagonal matrix element $\langle P| \mathcal{O}(x)|P\rangle$ (DIS) \rightarrow parton distributions: $q(x), \Delta q(x), \delta q(x)$

$$
\begin{array}{rlll}
\mathcal{O}^{\mu_{1} \ldots \mu_{n}}=\bar{q} \gamma^{\left\{\mu_{1}\right.} i D^{\mu_{2}} \ldots i D^{\left.\mu_{n}\right\}} q & \xrightarrow{\text { unpolarized }} & \left\langle x^{n}\right\rangle_{q}=\int_{0}^{1} d x x^{n}\left[q(x)-(-1)^{n} \bar{q}(x)\right] \\
\tilde{\mathcal{O}}^{\mu_{1} \ldots \mu_{n}}=\bar{q} \gamma_{5} \gamma^{\left\{\mu_{1} i D^{\mu_{2}} \ldots i D^{\mu n\}} q\right.} & \stackrel{\text { helicity }}{\rightarrow} & \left\langle x^{n}\right\rangle_{\Delta q}=\int_{0}^{1} d x x^{n}\left[\Delta q(x)+(-1)^{n} \Delta \bar{q}(x)\right] \\
\mathcal{O}_{T}^{\rho \mu_{1} \ldots \mu_{n}} & =\bar{q} \sigma^{\rho\left\{\mu_{1} i D^{\mu_{2}} \ldots i D^{\left.\mu_{n}\right\}} q\right.} & \stackrel{\text { transversity }}{\rightarrow} & \left\langle x^{n}\right\rangle_{\delta q}=\int_{0}^{1} d x x^{n}\left[\delta q(x)-(-1)^{n} \delta \bar{q}(x)\right] \\
\text { where } q=q_{\downarrow}+q_{\uparrow}, \Delta q=q_{\downarrow}-q_{\uparrow}, \delta q=q_{T}+q_{\perp} &
\end{array}
$$

- Off-diagonal matrix elements (DVCS) \rightarrow generalized form factors

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors - contain both form factors and parton distributions:

$$
\begin{gathered}
\left\langle N\left(p^{\prime}\right)\right| \mathcal{O}_{\not n}^{\mu_{1} \ldots \mu_{n}}|N(p)\rangle=\bar{u}\left(p^{\prime}\right)\left[\sum _ { \substack { i = 0 \\
\text { even } } } ^ { n - 1 } \left(A_{n i}\left(q^{2}\right) \gamma\left\{\mu_{1}+B_{n i}\left(q^{2}\right) \frac{i \sigma^{2}\left\{\mu_{1} \alpha q_{\alpha}\right.}{2 m}\right) q^{\mu_{2}} \ldots q^{\left.\mu_{i+1} \bar{P}^{\mu_{i+2}} \ldots \bar{P}^{\mu n}\right\}}\right.\right. \\
\left.+\delta_{\text {even }}^{n} C_{n 0}\left(q^{2}\right) \frac{1}{m} q^{\left\{\mu_{1}\right.} \ldots q^{\left.\mu_{n}\right\}}\right] u(p)
\end{gathered}
$$

And similarly for $\mathcal{O}_{\not \emptyset \gamma_{5}}$ in terms of $\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)$ and \mathcal{O}_{T} in terms of $A_{n i}^{T}, B_{n i}^{T}, C_{n i}^{T}$ and $D_{n i}^{T}$

Special cases:
a $n=1$: ardinary nucleon form factors
where

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors - contain both form factors and parton distributions:

$$
\begin{gathered}
\left\langle N\left(p^{\prime}\right)\right| \mathcal{O}_{\dot{n}}^{\mu_{1} \ldots \mu_{n}}|N(p)\rangle=\bar{u}\left(p^{\prime}\right)\left[\sum _ { \substack { i = 0 \\
\text { even } } } ^ { n - 1 } \left(A_{n i}\left(q^{2}\right) \gamma\left\{\mu_{1}+B_{n i}\left(q^{2}\right) \frac{i \sigma_{1}\left\{\mu_{1} \alpha\right.}{2 m} q_{\alpha}\right) q^{\mu_{2}} \ldots q^{\mu_{i+1} \bar{P}^{\mu_{i+2}} \ldots \bar{P}^{\left.\mu_{n}\right\}}}\right.\right. \\
\left.+\delta_{\text {even }}^{n} C_{n 0}\left(q^{2}\right) \frac{1}{m} q^{\left\{\mu_{1}\right.} \ldots q^{\left.\mu_{n}\right\}}\right] u(p)
\end{gathered}
$$

And similarly for $\mathcal{O}_{\not{ }_{p / 5}}$ in terms of $\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)$ and \mathcal{O}_{T} in terms of $A_{n i}^{T}, B_{n i}^{T}, C_{n i}^{T}$ and $D_{n i}^{T}$

Special cases:

- $n=1$: ordinary nucleon form factors

$$
\begin{aligned}
A_{10}\left(q^{2}\right)=F_{1}\left(q^{2}\right)=\int_{-1}^{1} d x H\left(x, \xi, q^{2}\right), & B_{10}\left(q^{2}\right)=F_{2}\left(q^{2}\right)=\int_{-1}^{1} d x E\left(x, \xi, q^{2}\right) \\
\tilde{A}_{10}\left(q^{2}\right)=G_{A}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{H}\left(x, \xi, q^{2}\right), & \tilde{B}_{10}\left(q^{2}\right)=G_{p}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{E}\left(x, \xi, q^{2}\right)
\end{aligned}
$$

where

- $j_{\mu}=\bar{\psi} \gamma_{\mu} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m} F_{2}\left(q^{2}\right)$

$$
\text { The Dirac } F_{1} \text { and Pauli } F_{2} \text { are related to the electric and magnetic Sachs form factors: }
$$

$$
\begin{aligned}
& G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
& j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}
\end{aligned}
$$

- $A_{n 0}(0), \tilde{A}_{n 0}(0), A_{n 0}^{T}(0)$ are moments of parton distributions, e.g. $\langle x\rangle_{q}=A_{20}(0)$ and $\langle x\rangle_{\Delta q}=\tilde{A}_{20}(0)$ are the spin independent and helicity distributions
\rightarrow can evaluate quark spin, $J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}$
\rightarrow nucleon spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}, \quad$ momentum sum rule: $\langle x\rangle_{g}=1-A_{20}(0)$

Main issues

Issues to be addressed:

- Evaluation of three-point correlators and renormalization
- Choice of operators - avoid mixing, consider iso-vector operators \rightarrow no disconnected contributions, these are under consideration by a number of groups, e.g. Parallel 26: K. Takeda; M. Engelhardt; W. Freeman; Parallel 41: R. Brower; A. O’ Cais; Poster Session: C. Collins
- Cut-off effects
- Finite volume effects
- Larger statistical noise:

For nucleon $\frac{\text { signal }}{\text { noise }} \sim \sqrt{N} e^{-\left(M_{N}-3 m_{\pi} / 2\right)}$ require $\mathcal{O}\left(10^{3}-10^{4}\right)$ for $\sim 200 \mathrm{MeV}$ pions

- Chiral expansions - more involved as compared to the light meson case \rightarrow Volume more difficult to assess
\Longrightarrow Extrapolation to physical point more demanding

```
Focus on:
    a Nucleon form factors and lower moments,
        dynamical simulations, pion mass
        m}
    * N-^ system }->\mathrm{ determine complete set of
        coupling constants needed in chiral
        expansions
```

 Other topics:
 Strange nucleon form factors
Hyperon, Roper and nucleon negative
parity form factors
Distribution amplitudes and transverse
momentum dependent PDF
\rightarrow Review by J. Zanotti, Lattice 2008
\rightarrow Parallel talks, Hadronic Structure and Interac-

Main issues

Issues to be addressed:

- Evaluation of three-point correlators and renormalization
- Choice of operators - avoid mixing, consider iso-vector operators \rightarrow no disconnected contributions, these are under consideration by a number of groups, e.g. Parallel 26: K. Takeda; M. Engelhardt; W. Freeman; Parallel 41: R. Brower; A. O’ Cais; Poster Session: C. Collins
- Cut-off effects
- Finite volume effects
- Larger statistical noise:

For nucleon $\frac{\text { signal }}{\text { noise }} \sim \sqrt{N} e^{-\left(M_{N}-3 m_{\pi} / 2\right)}$ require $\mathcal{O}\left(10^{3}-10^{4}\right)$ for $\sim 200 \mathrm{MeV}$ pions

- Chiral expansions - more involved as compared to the light meson case \rightarrow Volume more difficult to assess
\Longrightarrow Extrapolation to physical point more demanding

Focus on:

- Nucleon form factors and lower moments, dynamical simulations, pion mass
$m_{\pi} \lesssim 500 \mathrm{MeV}, L \gtrsim 2 \mathrm{fm}$
- $\mathrm{N}-\Delta$ system \rightarrow determine complete set of coupling constants needed in chiral expansions

Other topics:

- Strange nucleon form factors
- Hyperon, Roper and nucleon negative parity form factors
- Distribution amplitudes and transverse momentum dependent PDF
\rightarrow Review by J. Zanotti, Lattice 2008
\rightarrow Parallel talks, Hadronic Structure and Interactions

Lattice evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{q}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{q}^{\prime}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators Ratios: Leading time dependence cancels

$$
\begin{array}{rc}
a E_{\text {eff }}(\vec{q}, t)= & \ln [G(\vec{q}, t) / G(\vec{q}, t+a)] \\
\rightarrow a E(\vec{q}) & \\
R^{\mu \nu}(\Gamma, \vec{q}, t)= & \frac{G^{\mu \nu}(\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \sqrt{\frac{G\left(\vec{p}_{i}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G\left(\vec{p}_{i}, t\right) G\left(\vec{p}_{i}, t_{f}\right)}} \\
\rightarrow \Pi^{\mu \nu}(\vec{q}, \Gamma) &
\end{array}
$$

Variational approach can lead to improved plateaux: B. Blossier et at., (Alpha Collaboration), JHEP 0904 (2009)

Lattice evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{a}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators

Ratios: Leading time dependence cancels

$$
\begin{array}{rc}
a E_{\text {eff }}(\vec{q}, t)= & \ln [G(\vec{q}, t) / G(\vec{q}, t+a)] \\
\rightarrow a E(\vec{q}) & \\
R^{\mu \nu}(\Gamma, \vec{q}, t)= & \frac{G^{\mu \nu}(\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \sqrt{\frac{G\left(\vec{p}_{i}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G\left(\vec{p}_{i}, t\right) G\left(\vec{p}_{i}, t_{f}\right)}} \\
\rightarrow \Pi^{\mu \nu}(\vec{q}, \Gamma) &
\end{array}
$$

Variational approach can lead to improved plateaux:
\rightarrow extend to $Q^{2} \sim 4 \mathrm{GeV}^{2} \mathrm{H} .-\mathrm{W}$. Lin et al., arXiv:1005:0799 \& S. Cohen, Parallel 01

Electric form factor $\rightarrow t_{f}-t_{i}>1 \mathrm{fm}$ thanks T. Korzec

Non-perturbative renormalization

Most collaborations use non-perturbative renormalization.
ETMC: RI'-MOM renormalization scheme as in e.g. M. Göckeler et al., Nucl. Phys. B544,699

- Fix configurations to Landau gauge.
$s^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle$
$G(p)=\frac{a^{12}}{V} \sum_{x, y, z, z^{\prime}} e^{-i p(x-y)}\left\langle u(x) \bar{u}(z) \mathcal{J}\left(z, z^{\prime}\right) d\left(z^{\prime}\right) \bar{d}(y)\right\rangle$
\rightarrow Amputated vertex functions $\Gamma(p)=\left(S^{u}(p)\right)^{-1} G(p)\left(S^{d}(p)\right)^{-1}$
- Renormalization functions: Z_{q} and $Z_{\mathcal{O}}$
- Mass independent renormalization scheme \rightarrow need chiral extrapolations
- Subtract $\mathcal{O}\left(a^{2}\right)$ perturbatively, M. Constantinou, Parallel 08

$(a p)^{2}$

Non-perturbative renormalization

Most collaborations use non-perturbative renormalization.

- RBC-UKQCD: Also uses a R1'-MOM renormalization scheme but with momentum independent source, Y. Aoki al. arXiv:1003.3387

Similarly for $\left\langle x>_{\Delta u-\Delta d} \rightarrow\right.$ non-perturbative renormalization may explain the lower values observed by LHPC

Cut-off effects

- Nucleon axial charge g_{A}, momentum fraction $\left\langle x>_{u-d}=A_{20} \text { and helicity fraction }<x\right\rangle_{\Delta u-\Delta d}=\tilde{A}_{20}$ Calculated directly at $Q^{2}=0$ requiring no fits
- Nucleon isovector anomalous magnetic moment κ_{v}, Dirac and Pauli radii Require fits to electromagnetic form factors

\Longrightarrow Linear fits consistent with a constant
Cut-off effects small for $a<0.1 \mathrm{fm} \Longrightarrow$ use continuum chiral PT results

Cut-off effects

- Nucleon axial charge g_{A}, momentum fraction $\left\langle x>_{u-d}=A_{20} \text { and helicity fraction }<x\right\rangle_{\Delta u-\Delta d}=\tilde{A}_{20}$ Calculated directly at $Q^{2}=0$ requiring no fits
- Nucleon isovector anomalous magnetic moment κ_{v}, Dirac and Pauli radii Require fits to electromagnetic form factors

Cut-off effects small for $a<0.1 \mathrm{fm} \Longrightarrow$ use continuum chiral PT results

Finite volume corrections

Compare results at different volume e.g. for $g_{A},\langle x\rangle_{u-d}$

\Rightarrow Negligible volume effects on $\langle x\rangle_{u-d}$ for $L m_{\pi} \gtrsim 3$ 3.
\Rightarrow Negligible volume effects on g_{A} for $L m_{\pi} \gtrsim 4.3$

- Accurate lattice data by LHPC using a hybrid action at $\sim 350 \mathrm{MeV}$ pions, $L m_{\pi}=4.3$ and $L m_{\pi}=6.2$ show no significant volume effects for both g_{A} and $<x>_{u-d}$.
- TMF results at $\sim 300 \mathrm{MeV}, L m_{\pi}=3.3$ and $L m_{\pi}=4.3$ within statistical errors .
- QCDSF results for g_{A} at $m_{\pi} \sim 270 \mathrm{MeV}$ for $L m_{\pi}=3.4$ about a standard deviation lower than at $L m_{\pi}=4.2$. For $\langle x\rangle_{u-d}$ no volume correction even for $L m_{\pi}=2.5$
- RBC-UKQCD results with DWF also show no statistically significant volume effects for $L m_{\pi} \gtrsim 4$, Y. Aoki et al., arXiv:1003:3387.

Finite volume dependence

G_{E} and G_{M} : dipole with the ρ-mass describes well the data Induced pseudoscalar G_{ρ} affected by finite volume at low Q^{2}-due to the pion pole behaviour.

Physical results on nucleon form factors

Axial charge is well known experimentally

- Agreement among recent lattice results all use non-perturbative Z_{A}
- Weak light quark mass dependence
- What can we say about the physical value of g_{A} ?
- Extrapolation of ETMC results in the range $260-500 \mathrm{MeV}$ still yield large uncertainties and underestimate g_{A}.

Results shown are from:

- $N_{F}=2$ twisted mass fermions, ETMC, C.A. et al. PoS LAT2009, 145; S. Dinter, Parallel 02
- $N_{F}=2+1$ Domain wall fermions, RBC-UKQCD, T. Yamazaki et al., PRD 79, 14505 (2009)
- $N_{F}=2+1$ hybrid action, LHPC, J. D. Bratt et al., arXiv:1001.3620

New results:

- $N_{F}=2$ Clover, QCDSF, D. Pleiter; CLS, B. Knippschild, Parallel 01
- $N_{F}=2=1$ DWF, RBC-UKQCD, S. Ohta, Parallel 02
\triangle axial charge can be extracted from lattice

Physical results on nucleon form factors

Axial charge is well known experimentally

- Agreement among recent lattice results all use non-perturbative Z_{A}
- Weak light quark mass dependence
- What can we say about the physical value
- Extrapolation of ETMC results in the range 260-500 MeV still yield large uncertainties and underestimate g_{A}.

Results shown are from:

- $N_{F}=2$ twisted mass fermions, ETMC, G.A. et al. PoS LAT2009, 145; S. Dinter, Parallel 02
- $N_{F}=2+1$ Domain wall fermions, RBC-UKQCD, T. Yamazaki et al., PRD 79, 14505 (2009)
Δ axial charge can be extracted from lattice
\Longrightarrow Study N- Δ system to extract axial charges \rightarrow perform global fits.
In a similar spirit, determination of the axial charges for other octet baryons to provide input for χ PT, H.- W. Lin and K. Orginos, PRD 79, 034507 (2009); J. Zanotti, Parallel 01.

Results on nucleon form factors

Nucleon electromagnetic and axial form factors

Results from ETMC (arXiv:0910.3309), LHPC using DWF (S. N. Syritsyn, PRD 81, 034507 (2010)) and a hybrid action (J. D. Bratt et al., arXiv:1001:3620), and from CLS using Clover, (H. Wittig) Can we get results at physical point?

Chiral extrapolation of electromagnetic form factors

As for g_{A} to get an idea use SSE to one-loop, T. R. Hemmert and W. Weise, Eur. Phys. J. A 15,487 (2002); M. Gockeler et al., PRD 71, 034508 (2005).
Fit $F_{1}\left(m_{\pi}, Q^{2}\right)$ and $F_{2}\left(m_{\pi}, Q^{2}\right)$ with 5 parameters: κ_{v}^{0}, the isovector and axial N to Δ couplings and two counterterms

\rightarrow need smaller Q^{2}. Use twisted b.c.? Need to understand finite volume corrections, Ph. Hagler, (QCDSF) PoS LAT2008, 138.

Chiral extrapolation of electromagnetic form factors

As for g_{A} to get an idea use SSE to one-loop, T. R. Hemmert and W. Weise, Eur. Phys. J. A 15,487 (2002); M. Gockeler et al., PRD 71, 034508 (2005).
Fit $F_{1}\left(m_{\pi}, Q^{2}\right)$ and $F_{2}\left(m_{\pi}, Q^{2}\right)$ with 5 parameters: κ_{v}^{0}, the isovector and axial N to Δ couplings and two counterterms

Results on nucleon generalized form factors

Generalized form factors: $\bar{u} \gamma_{\{\mu} \overleftrightarrow{D}_{\nu\}} u-\bar{d} \gamma_{\{\mu} \overleftrightarrow{D}_{\nu\}} d$

- Results given in the $\overline{M S}$ scheme at $\mu=2 \mathrm{GeV}$
- As n increases slope of $A_{n 0}\left(-q_{\perp}^{2}\right)$ decreases, LHPC, J. D. Bratt et al., arXiv:1001:3620

Results on nucleon generalized form factors

Generalized form factors $\bar{u} \gamma_{\{\mu} \overleftrightarrow{D}_{\nu\}} u-\bar{d} \gamma_{\{\mu} \overleftrightarrow{D}_{\nu\}} d$ and $\bar{u} \gamma_{\{\mu} \gamma_{5} \overleftrightarrow{D}_{\nu\}} u-\bar{d} \gamma_{\{\mu} \gamma_{5} \overleftrightarrow{D}_{\nu\}} d$

- Results given in the $\overline{M S}$ scheme at $\mu=2 \mathrm{GeV}$
- ETMC: use non-perturbative renormalization constants with $\mathcal{O}\left(a^{2}\right)$ terms subtracted perturbatively

Results on nucleon generalized form factors

Generalized form factors $\bar{u} \gamma_{\{\mu} \overleftrightarrow{D}_{\nu\}} u-\bar{d} \gamma_{\{\mu} \overleftrightarrow{D}_{\nu\}} d$ and $\bar{u} \gamma_{\{\mu} \gamma_{5} \overleftrightarrow{D}_{\nu\}} u-\bar{d} \gamma_{\{\mu} \gamma_{5} \overleftrightarrow{D}_{\nu\}} d$

- Results given in the $\overline{M S}$ scheme at $\mu=2 \mathrm{GeV}$
- ETMC: use non-perturbative renormalization constants with $\mathcal{O}\left(a^{2}\right)$ terms subtracted perturbatively

Can we get results at physical point?

Chiral extrapolation of A_{20} and \tilde{A}_{20}

HB χ PT for A_{20} and \tilde{A}_{20}, D. Arndt, M. Savage, NPA 697, 429 (2002); W. Detmold, W Melnitchouk, A. Thomas, PRD 66, 054501 (2002)
Fit ETMC results with scale $\mu^{2}=1 \mathrm{GeV}^{2}$
$\langle x\rangle_{u-d}=C\left[1-\frac{3 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \frac{m_{\pi}^{2}}{\mu^{2}}\right]+\frac{c_{8}\left(\mu^{2}\right) m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}$
$\langle x\rangle_{\Delta u-\Delta d}=\tilde{C}\left[1-\frac{2 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \frac{m_{\pi}^{2}}{\mu^{2}}\right]+\frac{\tilde{c_{8}}\left(\mu^{2}\right) m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}$

Chiral extrapolation of A_{20} and B_{20}

$\mathcal{O}\left(p^{2}\right)$ in $\mathrm{CB} \chi$ PT for vector, M. Dorati, T. Gail, T. Hemmert, NPA798, 96 (2008)
A combined fit to A_{20}, B_{20} and C_{20} is carried out. The mass of the nucleon at the chiral limit is used as input.
\rightarrow LHPC obtains a value for A_{20} in agreement with physical value, J. D. Bratt et al., arXiv:1001.3620

Disconnected contributions neglected

$N \gamma^{*} \rightarrow \Delta$

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j_{\mu}|N(p, s)\rangle=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \bar{u}_{\sigma}\left(p^{\prime}, s^{\prime}\right)\left[\mathcal{G}_{M 1}^{*}\left(q^{2}\right) K_{M 1}^{\sigma \mu}+\mathcal{G}_{E 2}^{*}\left(q^{2}\right) K_{E 2}^{\sigma \mu}+\mathcal{G}_{C 2}^{*}\left(q^{2}\right) K_{C 2}^{\sigma \mu}\right] u(p, s)$
D. B. Leinweber, T. Draper, and R. M. Woloshyn, PRD 48, 2230 (1993)

- Extensive experimental program to measure the subdominant quadrupole form factors $\mathcal{G}_{E 2}^{*}\left(q^{2}\right)$ and $\mathcal{G}_{\mathrm{C} 2}^{*}\left(q^{2}\right) \rightarrow$ probe deformation.
- Extraction possible by constructing optimized sources that isolate $\mathcal{G}_{E 2}^{*}$ and $\mathcal{G}_{C 2}^{*}$.
- Use a hybrid action and $N_{F}=2+1$ DWF, provided by RBC-UKQCD for LHPC \Rightarrow lattice results confirm non-zero values

The transverse-longitudinal response function $\sigma_{L T}$ vs c.m. angle between p and γ^{*} (from MAMI and Bates)
C.A., G. Koutsou, J. W. Negele, A. O' Cais, Y.Proestos, A. Tsapalis, arXiv:0910.5617

$N \gamma^{*} \rightarrow \Delta$

$$
\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j_{\mu}|N(p, s)\rangle=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \bar{u}_{\sigma}\left(p^{\prime}, s^{\prime}\right)\left[\mathcal{G}_{M 1}^{*}\left(q^{2}\right) K_{M 1}^{\sigma \mu}+\mathcal{G}_{E 2}^{*}\left(q^{2}\right) K_{E 2}^{\sigma \mu}+\mathcal{G}_{C 2}^{*}\left(q^{2}\right) K_{C 2}^{\sigma \mu}\right] u(p, s)
$$

D. B. Leinweber, T. Draper, and R. M. Woloshyn, PRD 48, 2230 (1993)

- Extensive experimental program to measure the subdominant quadrupole form factors $\mathcal{G}_{E 2}^{*}\left(q^{2}\right)$ and $\mathcal{G}_{C 2}^{*}\left(q^{2}\right) \rightarrow$ probe deformation.
- Extraction possible by constructing optimized sources that isolate $\mathcal{G}_{E 2}^{*}$ and $\mathcal{G}_{C 2}^{*}$.
- Use a hybrid action and $N_{F}=2+1$ DWF, provided by RBC-UKQCD for LHPC \Rightarrow lattice results confirm non-zero values

C.A., G. Koutsou, J. W. Negele, A. O' Cais, Y.Proestos, A. Tsapalis, arXiv:0910.5617

Axial vector N to Δ form factors

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}^{3}|N(p, s)\rangle=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(p^{\prime}\right) E_{N}(p)}\right)^{1 / 2} \bar{u}^{\lambda}\left(p^{\prime}, s^{\prime}\right)\left[\left(\frac{C_{3}^{A}}{m_{N}} \gamma^{\nu}+\frac{C_{4}^{A}}{m_{N}^{2}} p^{\prime \nu}\right)\left(g_{\lambda \nu} g_{\rho \nu}-g_{\lambda \rho} g_{\mu \nu}\right) q^{\rho}+C_{5}^{A} g_{\lambda \mu}+\frac{C_{6}^{A}}{m_{N}^{2}} q_{\lambda} q_{\mu}\right] u(p . s)$

- Use a hybrid action and $N_{F}=2+1$ DWF, provided by RBC-UKQCD for LHPC
- C_{5}^{A} is the equivalent of the nucleon G_{A} and C_{6}^{A} of the G_{p} showing a pion pole behavior.

C.A. G. Koutsou, J. W. Negele, A. O’ Cais, Y.Proestos, A. Tsapalis, arXiv:0910.5617

Δ electromagnetic form factors

$$
\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|\Delta(p, s)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, s^{\prime}\right)\left\{\left[F_{1}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{3}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \gamma^{\mu}+\left[F_{2}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{4}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{\Delta}}\right\} u_{\beta}(p, s)
$$

$$
\text { with e.g. the quadrupole form factor given by: } G_{E 2}=\left(F_{1}^{*}-\tau F_{2}^{*}\right)-\frac{1}{2}(1+\tau)\left(F_{3}^{*}-\tau F_{4}^{*}\right) \text {, where } \tau \equiv Q^{2} /\left(4 M_{\Delta}^{2}\right)
$$

- Construct an optimized source to isolate $G_{E 2} \rightarrow$ additional sequential propagators needed.
- Neglect disconnected contributions in this evaluation.
- Similarly we can calculate the electromagnetic form factors of the $\Omega^{-} \rightarrow$ very weak light quark dependence \rightarrow can get physical results directly, e.g. magnetic moment agrees with experiment

Δ electromagnetic form factors

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|\Delta(p, s)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, s^{\prime}\right)\left\{\left[F_{1}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{3}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \gamma^{\mu}+\left[F_{2}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{4}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M_{\Delta}}\right\} u_{\beta}(p, s)$
with e.g. the quadrupole form factor given by: $G_{E 2}=\left(F_{1}^{*}-\tau F_{2}^{*}\right)-\frac{1}{2}(1+\tau)\left(F_{3}^{*}-\tau F_{4}^{*}\right)$, where $\tau \equiv Q^{2} /\left(4 M_{\Delta}^{2}\right)$
Transverse charge density of a Δ, polarized along the x-axis can be defined in the infinite momentum frame:
$\rightarrow \rho_{T \frac{3}{2}}^{\Delta}(\vec{b})$ and $\rho_{T \frac{1}{2}}^{\Delta}(\vec{b})$.
Using $G_{E 2}$ we can predict 'shape' of Δ and Ω^{-}.

Δ with spin $3 / 2$ projection elongated along spin axis compared to the Ω^{-}
C. A., T. Korzec, G. Koutsou, C. Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghen, NPA825, 115 (2009).

- Axial FFs, E. Gregory, Parallel 01

Conclusions

- Nucleon form factors provide a benchmark for lattice QCD beyond hadron masses.

Most collaborations obtain results up to about $Q^{2}=1.5-2 \mathrm{GeV}^{2}$.
Need results at both lower $Q^{2} \rightarrow$ extract radii and magnetic moments and higher Q^{2}

- Cut-off effects small for $a \lesssim 0.1 \mathrm{fm}$
- Finite volume corrections difficult to assess

Within current statistical errors of $\sim 3 \%$ results on $G_{E}, G_{M}, G_{A},\langle x\rangle_{q}$ and $\langle x\rangle_{\Delta q}$ are consistent for
$L m_{\pi} \gtrsim 3.5 \rightarrow L m_{\pi}=4$
Finite volume corrections significant for G_{p}

- Make a lattice determination of a number of couplings used as input in chiral extrapolations \rightarrow will enable global fits to e.g. $N-\Delta$ system
- Hadron 'shape' can be investigated using input from lattice form factors as demonstrated for Δ and Ω \rightarrow explore GPDs that yield more detailed information on both longitudinal and transverse distributions

Thank you for your attention

