Hadron spectrum and light pseudoscalar decay constants

Ch. Hoelbling

Wuppertal University

Lattice 2010, Villasimius June 14 2010

Outline

This review will cover recent results on

- Light quark QCD spectrum
 - Ground states
 - Excited states
- Decay constants f_{π} and f_K

I will discuss where we stand with respect to

- Reaching the physical point
- Taking the continuum limit
- Taking the infinite volume limit

I will discuss what needs to be done to further increase accuracy

Light flavors: I J. Laiho (Sat) Heavy flavors: J. Heitger (Fri)

Reaching the physical point

Taking the continuum limit

Review of simulations

Error assessment

Summary

Taking the infinite volume limit

ETMC 2 Flavor (Alexandrou et. al. '09)

ETMC Baryon Spectrum

- Different chiral forms for different baryons
- 2 lattice spacings for continuum extrapolation

Ch. Hoelbling (Wuppertal)

Hadron spectrum and light pseudoscalar decay constants

ETMC 2+1+1 Flavor (Baron et. al. '10)

Gauge	F	erm.	N _f	
lwasak	TM		2+1+1	
a ightarrow 0	$ \chi$	FV	Flavor	
3	√	×	\checkmark	
IS. Reker (Mon)				

ETMC Decay Constants

- $N_f = 2 + 1 + 1$
- Scale set by f_{π}/m_{π}
- NLO χ fits
- NNLO for systematic error
- f₀=121.14(8)(19)MeV
- $f_K/f_{\pi} = 1.210(18)$ from $N_f = 2$ (Blossier et. al. '09)
- preliminary 2 + 1 + 1: $f_K/f_{\pi} = 1.22(1)$ resc. Urbach (Mon)

Plenary by G. Herdoiza(Mon)

Error assessment

Summary

MILC (Bazavov et. al. '09)

Review of simulations

Error assessment

MILC (Bazavov et. al. '09)

MILC Baryon Spectrum

- Different fit strategies for different baryons
- Relatively large discretization effects

Ch. Hoelbling (Wuppertal)

Hadron spectrum and light pseudoscalar decay constants

MILC Baryon Spectrum

LHP Baryon Spectrum (Walker-Loud et. al. '09)

- DW on Asqtad, $a \approx 0.12$ fm ensemble
- SU(2)/SU(3) HBχ PT, FV corrections

MILC Decay Constants Setup

- Partially quenched $N_f = 2 + 1$ ensembles
- Cascaded fits:
 - Fix SU(3) LECs with $m < 0.6 m_s^{\text{phys}}$ (N²LO)
 - Use LECs and add analytic N³LO, N⁴LO to fit full set
- Crosscheck with SU(2) for light quark observables (up to N²LO)
- Scale set by r₁

MILC Decay Constants

- $f_{\pi} = 129.2(4)(1.4)$ MeV SU(3)
 - $f_{\pi} = 130.2(1.4) \left({2.0 \atop 1.6}
 ight) {
 m MeV SU(2)}$
- $f_{K} = 156.1(4) \begin{pmatrix} 2.0 \\ 1.6 \end{pmatrix} \text{MeV}$
- $f_K/f_{\pi} = 1.197(2) \begin{pmatrix} 3 \\ 7 \end{pmatrix}$
- f₃ = 118.0(3.6)(4.6)MeV
- $f_2 = 123.0(5)(7)$ MeV $f_2 = 123.8(1.4) \begin{pmatrix} 1.0 \\ 3.7 \end{pmatrix}$ MeV

QCDSF 2 Flavor

QCDSF $N_f = 2$ Baryon Spectrum

- Minimal discretization effects
- Best fit of nucleon $\propto m_\pi^2$

QCDSF 2+1 Flavor (Bietenholz et. al. '10)

QCDSF Baryon Spectrum

- χ limit with fixed singlet quark mass (LO): $2m_{\kappa}^2 + m_{\pi}^2 = \text{const}$
- Gell-Mann Okubo linear fit

Hadron spectrum and light pseudoscalar decay constants

QCDSF Decay Constants

- *N*_f = 2
- Scale set by m_N
- Finite volume, continuum
- Preliminary:

 $f_K/f_{\pi} = 1.222(6)$ Schierholz (Mon)

- $N_f = 2 + 1$
- Scale set by $X_N \equiv m_{\text{Octet}}$
- No systematics yet
- Preliminary:

 $f_K/f_{\pi} = 1.221(15)$

BMW (Durr et.al. '08, Durr et.al. '10)

BMW Baryon Spectrum (Durr et.al. '08)

- 3 lattice spacings for continuum extrapolation
- Non-relativistic heavy baryon χ PT and Taylor χ fits
- Resonances: ground state FV energy shift

BMW Decay Constants (Durr et.al. '10)

- SU(2), SU(3) and Taylor χ fits
- Full error analysis
- *f_K/f_π*=1.192(7)(6)

PACS-CS (Aoki et. al. '09, Aoki et. al. '10)

PACS-CS Baryon Spectrum and Decay Constants

- Reweighted to physical point
- 1 lattice spacing
- $m_{\pi}L \sim 1.97$

- No treatment of resonant states yet
 - Still good agreement with resonance spectrum
 - Small V: minimum momentum $p_{\min} \equiv rac{2\pi}{L} > m_{
 ho}^{phys}/2$
- Decay constants:

	reweighted	extrapolated
$f_{\pi}[MeV]$	124.1(8.5)(0.8)	134.0(4.2)
f _K [MeV]	165.5(3.4)(1.0)	159.4(3.1)
f_K/f_π	1.333(72)	1.189(20)

RBC/UKQCD

Summary

RBC/UKQCD Decay Constants C. Kelly(Tue)

- Continuum, FV, Ω scale
- SU(2) and Taylor fits
- (Prelim. DSDR gauge)

•
$$f_{\pi} = 122(2)(5)_{\chi}(2)_{FV} MeV$$

•
$$f_K/f_{\pi} = 1.208(8)(23)_{\chi}(14)_{\text{FV}}$$

RBC/UKQCD η and η'

- a pprox 0.11 fm, $m_\pi \sim 400-700$ MeV
- 2-state operators, compute masses and mixing angle

Summary

Hadron Spectrum Collaboration (Bulava et. al. '10)

HSC (Excited) Hadron Spectrum

- Anisotropic lattices $(16^3 \times 128)$
- Variational method
- Need for multi-hadron interpolating operators

Hadron spectrum and light pseudoscalar decay constants

BGR (Engel et. al. '10)

BGR (Excited) Hadron Spectrum

- Variational method
- Reasonable ground states
- Weak signals for excited and scattering states
- Finite volume effects

Summary

CSSM Nucleon Excitations (Mahbub et. al. '10)

Ch. Hoelbling (Wuppertal)

Hadron spectrum and light pseudoscalar decay constants

CSSM Nucleon Excitations $N_f = 2 + 1$

F_K/F_{π} Summary

Sources of Errors

Currently, the leading systematics for ground state masses and decay constants come from

- Reaching the physical point
- Taking the continuum limit
- Taking the infinite volume limit
- Resonances: FV interaction with scattering states

Subleading:

- QED effects
- Isospin breaking effects

Chiral Extrapolation - Interpolation

We have calculations

- close to the physical point (m_{π} < 200MeV)
 - Clover (QCDSF, PACS-CS, BMW)
 - Staggered (MILC)
 - Domain Wall (RBC)
- reweighted to the physical point (PACS-CS)

Different extrapolation methods agree

- Extrapolation is tiny
- Taylor expansion and χ PT
 - Order (NⁿLO) depends on quality of data / external input

This is an observable dependent statement!

Review of simulations

Error assessment

Chiral Extrapolation

0000000000

Review of simulations

Error assessment

Landscape

Finite Volume

The real challenge

- Physical Point
- Infinite volume
- Continuum

In principle, infinite volume is easy for many observables:

- Leading corrections vanish exponentially in L
- ➤ Just need large enough volumes
 - Carefull: This is not true for all observables!
 - Resonances: mixing with scattering states
 - FV can be usefull for determining widths etc. (Lüscher '85-'91)

Review of simulations

Error assessment

Summary

FV Landscape

Continuum Extrapolation

Continuum extrapolation:

- Mild for ratios of hadron masses and decay constants
- Observable dependent
- Action dependent (interplay with flavor/taste splitting)

still extrapolation needed → will be leading systematics

00000000000

Continuum Landscape

QED Effects (Blum et. al. '10)

- PQ DW, $a \approx 0.11$ fm
- $\bullet~16^3\times32$ and $24^3\times32$
- $m_\pi \sim 250-400 {
 m MeV}$
- Quenched, non-compact QED
- NLO χ PT

•
$$(m_{\pi^+} - m_{\pi^0})_{\sf QED} = 4.50(23) {\sf MeV}$$

•
$$(m_{K^+} - m_{K^0})_{\sf QED} = 1.33(4) {\sf MeV}$$

•
$$(m_n - m_p)_{QED} = -0.38(7) MeV$$

Ch. Hoelbling (Wuppertal)

Hadron spectrum and light pseudoscalar decay constants

QED Effects (BMW)

- BMW Clover, $a \approx 0.115$ fm
- $m_\pi \sim 200-400 {
 m MeV}$
- Quenched, non-compact QED
- Second order Taylor

M^{phys}

 200^{2}

 100^{2}

 300^{2}

 $M_{\pi^{+}}^{2} [MeV^{2}]$

 400^{2}

² 400² We We We 300²

> 200^{2} 100^{2}

•
$$(m_{K^+} - m_{K^0})_{\sf QED} = 2.2(2) {\sf MeV}$$

 4σ discrepancy with Blum. et. al.

RA. Portelli(Thu)

Conclusion

Ground state light Hadron spectrum

- Reproduced to few % accuracy
- On that level: systematics under control

Light decay constants

- Lattice results in good agreement
- F_K/F_{π} Error competitive with experiment
- Lattice compatible with first-row unitarity

Higher precision:

- Physical point at large volume, more statistics
- Multi-state treatment of resonances
- Excited state light Hadron spectrum
 - Qualitative agreement
 - Improve excited state treatment (scattering states, FV)

Thanks for sharing preliminary results

C. Bernard, P. Boyle, J. Carbonell, G. Herdoiza, R. Horsley, K. Jansen, C. B. Lang, R. Mawhinney, G. Schierholz, C. Urbach, A. Walker-Loud

BACKUP

Summary

Tunneling at $a \approx 0.054$ fm, $m_{\pi} = 220$ MeV

