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Martin Lüscher, CERN Physics Department

15000 20000 25000 30000 35000

molecular-dynamics time

−20

−10

0

10

20

to
po

lo
gi

ca
l c

ha
rg

e 
Q

HMC, pure gauge

64× 323

a = 0.07 fm

XXVIII International Symposium on Lattice Field Theory

Villasimius, Italy, June 14–19 2010

1/17



Empirical facts

The autocorrelation time of Q grows
like a−5 or even more rapidly

Little changes when the sea quarks are
included in the simulations

HMC, DD-HMC and link-update algorithms
are all similarly ineffective

Del Debbio, Panagopoulos

& Vicari ’02

Schaefer, Sommer

& Virotta ’09

→ talk by Virotta

⇒ at fixed physics, the effort for HMC simulations

grows at least like a−10
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In practice, simulations are often not that long

⇒ the calculated expectation values can be
biased (by 1/V -terms, for example) and

⇒ one may also totally underestimate their
statistical errors
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For illustration, consider an autocorrelation function

ρ(t) = |c0|2e−t/τ0 + |c1|2e−t/τ1 + . . .

such as
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Difficult case:

τ0|c0|2 � τ1|c1|2

Note: Runs much longer than τ0 are required to be able to control the situation
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How exactly do the topological sectors
emerge when a→ 0?

Which modes of the gauge field tend to
be slowly updated?

Is there a way to bypass the problem?
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Wilson flow

Consider the flow equation

V̇t(x, µ) = −g2
0{∂x,µSw(Vt)}Vt(x, µ)

Vt(x, µ)|t=0 = U(x, µ)

Properties

? Ṡw ≤ 0⇒ the flow tends to
smoothen the field and

? is in fact generated by infinitesimal
stout link-smearing steps

Morningstar & Peardon ’04

? The global existence of the flow
is rigorously guaranteed

t = 0

t

field space
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Wilson flow in QED

Continuum flow equation

Ḃµ = DνGνµ ⇒ t = [length]2

Solution in the abelian case

Bµ(t, x) =
∫

d4y Kt(x− y)Aµ(y) + gauge terms, Kt(z) =
e−

z2
4t

(4πt)2

i.e. B = A smoothed over a range
√

8t

〈Bµ1(t, x1) . . . Bµn
(t, xn)〉 = en0

∫
d4y1 . . . d4ynKt(x1 − y1) . . .Kt(xn − yn)

×G0(y1, . . . , yn)µ1...µn︸ ︷︷ ︸ + g.t.

bare photon n-point function
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Renormalization

G0 = Z
n/2
3 GR e0 = Z

−1/2
3 eR ⇒ en0G0 = enRGR

In other words

Bµ(t, x) is a renormalized smooth gauge field for t > 0

(up to its gauge dof)

Note, for example, that

lim
t→∞

t2〈GµνGµν〉 =
3e2R
32π2

⇒ the renormalized charge eR can be “measured” in this way
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Wilson flow in QCD

Define

E = 1
4G

a
µνG

a
µν

To 1-loop order

〈E〉 =
3

4πt2
α(q) {1 + k1α(q) + . . .}

q = (8t)−1/2, k1 = 1.0978 + 0.0075×Nf (MS scheme)

turns out to be a renormalized quantity!
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Beyond perturbation theory . . .
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Scaling behaviour
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⇒ Little doubt remains that the Wilson flow maps the gauge field
to a renormalized smooth field as in QED

Wilson flow 11/17



How do the topological sectors emerge?

Consider the transformation U → V = Vt0∫
D[U ] . . . e−S(U) =

∫
D[V ] . . . e−S̃(V )

S̃(V ) = S(U) +
16g2

0

3a2

∫ t0

0

dt Sw(Vt)

⇒ large values of

sp = Re tr{1− V (p)}, V (p) =

are strongly suppressed as a→ 0
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∼ a10

The submanifold of fields V satisfying

sp < 0.067 for all p

divides into topological sectors ML ’82, Phillips & Stone ’86

⇒ the probability to be “between the sectors” decreases roughly like a6 !
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Autocorrelation times

SU(3) theory, HMC algorithm, τ = 2, Pacc = 83%

t/t0 τint[Q] τint[Q2] τint[E]

0.2 65(5) 30(2) 22(1)
0.4 67(5) 32(2) 34(2)
0.8 68(6) 33(2) 43(3)

48× 243, a = 0.1 fm

τint[sp] = 9 [MD time]

0.2 614(90) 284(34) 53(4)
0.4 615(90) 286(34) 68(5)
0.8 615(90) 286(34) 85(6)

∼ a−6 ∼ a−2

64× 323, a = 0.07 fm

τint[sp] = 7
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Open boundary conditions

Periodic in space, but not in time

Amounts to Neumann b.c.

F0k(x) = 0 at x0 = 0, T

in the continuum theory

⇒ Field space becomes connected, i.e.
instantons can move in and out

⇒ Simulations should not get trapped
anymore

space

ti
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e
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However . . .

τint[Q] τint[Q2] τint[E]

periodic 68(6) 33(2) 43(3)
open 61(6) 27(2) 36(3)

48× 243, a = 0.1 fm

periodic 615(90) 286(34) 85(6)
open 384(56) 155(20) 75(6)

64× 323, a = 0.07 fm

⇒ Visible improvement, but scaling is still ∼ a−5

⇒ Slowdown is partly caused by other effects
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Conclusions

The “wall” is still there, but looks less daunting than a year ago

? Wilson flow = interesting tool for studying
the continuum limit in QCD

? In particular, one can now understand how
the topological sectors emerge

? With open b.c., the barriers between the
sectors disappear

The challenge is to find algorithms that move Vt (at, say, t = t0)
rapidly through field space
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