

LHC Physics Challenges and the First Results

00

CMS Experiment at the LHC, CERN Run/Event: 123592/526063 Candidate Muon Event

Slawek Tkaczyk FNAL Representing CMS/Atlas collaborations LATTICE 2010 June 14-19, Villasimius, Sardinia, Italy

MS Experiment at the LHC, CERN

OUTLINE

 Introduction -Machine Status

 From Commissioning to Operations and Analyses -First LHC beams -LHC Physics Run 2010 @7TeV

Conclusions

Physics Cruxes of Today

- How do particles acquire mass?
- What is the origin of the spontaneous symmetry breaking?
- Is the Universe super-symmetric?
- What explains dark matter?
- Are there extra dimensions?
- IMPORTANT unsolved questions need **POWERFUL** apparatus to look for answers!

CERN LARGE HADRON COLLIDER

CMS

27 km circumference 1200 dipole magnets •14m long •8.4 T field ? •Dual aperture

Proton-Proton collisions at 14 TeV 25ns between beam crossings Peak Luminosity 10³⁴s⁻¹cm⁻² 20 collisions per beam crossing

LHC First Beams Timeline

Sep 2008Jul 2009First beam splashesRepairs in the LHC
finished

Dec 2009 First 0.9 & 2.36 TeV collisions

2008 Cosmic DataSep 2008

Nov 2009

@3.8T Field

Magnet incident, one Two circulating year long LHC set back beams

Mar 2010 7TeV collisions

A Couple of Good Weeke

06-Apr-2010 17:27:13	Fill #: 1023	Energy: 297.4 Ge	V I(B1): 1.5
	ATLAS	ALICE	C
Experiment Status	STANDBY	NOT REAL	DY STA
Instantaneous Luminosit	y 0.000e+0	00 0.000e+	00 0.00
BRAN Count Rate	3.229e-0	07 4.059e-3	32 2.08
BKGD 1	0.002	0.014	0.
BKGD 2	0.000	0.000	0.
BKGD 3	0.000	0.005	0.
LHCf STANDBY Count(Hz):	0.000 LHCb VEL	O Position Out Ga	p: 58.0 mm T
			· · · · · · · · · · · · · · · · · · ·

Performance over the last 12 Hrs

ends	5
5e+08	I(B2): 7.01e+07
1S	LHCb
IDBY	STANDBY
e+00	8.989e-04
5e-11	1.635e-32
02	0.131
02	0.002
03	0.037

CALIBRATION

OTEM:

003

Beam Commissioning in 2010

Global machine checkout

450 GeV re-commissioning

Machine protection commissioning

Ramp commissioning

Establish stable safe beams at 3.5 TeV

Collisions at 3.5 TeV

System/beam commissioning continued Squeeze

Collisions at 3.5 TeV squeezed

Finish This!!

LHC Status

- Remarkable knowledge of the LHC magnet model
 - A key to successful commissioning with beams
 - Tunes, energy matching, optics close to the LHC model
- Bunch intensities: 1.1E11 with excellent emittance
- **Ramp&squeeze for physics @3.5TeV at higher intensities**
- Machine protection super critical element
- Goal: delivery of 1fb⁻¹ to the experiments by the end 2011
 - 2010 Target: 3.5TeV, $\beta^*=2m$, with/w-out crossing angle
 - 2011 Target: 3.5TeV, $\beta^*=2m$, with crossing angle

Flat out running at 1-2x10³²cm⁻²s⁻¹ in 2011

 Correspond to 8E10 ppb, 700 bunches, with a stored energy of 35 **MJ** (with $\beta^*=2$ m and nominal emittance).

LHC Short Term Plan 2010

LHC Experiments

Tracking: $|\eta| < 2.5, B = 3.8T$

• Si pixels and strips

Calorimetry: $|\eta|^{em} < 2.5 |\eta|^{had} < 5$

- EM: homogeneous PbWO₄ crystals
- HAD: Cu-Zn/scint. + Fe/Quartz

Muon Spectrometer: $|\eta| < 2.7$

Solenoïd return yoke instrumented

 Transition radiation detector • EM: sampling; Pb/LAr accordeon • HAD: Sampling Fe/scint. + Cu-W/LAr • Air-core toroids with muon chambers

Tracking: $|\eta| < 2.5, B = 2T$ • Si pixels and strips Calorimetry: $|\eta| < 5$ Muon Spectrometer: $|\eta| < 2.7$

Aerial view of CMS Site@P5 - 1998 Gallo Roman vestiges

CMS Closed 3rd Sep 2008

eb 2007

Services for Trk, ECAL, HCAL 250 km cables, pipes, fibres

From dream to reality:

50000 person hours 8 months

6100 cables, 4000 fibre ribbons, 1000 pipes

3 Sep 2008

30 March 2010 – First 7 TeV Collisions

ors:			11 Triagors:
ers.			
			L1_BptxMinus
			L1_BptxPlus
			L1_BptxPlusORMinus
			L1_BSc2Minus_BptxMinus
			L1_BscHighMultiplicity
			L1 BscMinBiasInnerThreshold1
			L1_BscMinBiasInnerThreshold2
			L1_BscMinBiasOR
		LL LL	BscMinBiasOR_BptxPlusORMinus
			L1_MinBias_HTT10
			L1_SingleForJet2
			L1_SingleHfBitCountsRing1_1
			L1_SingleTauJet2
*× 🗋	and the second second		L1 ZeroBias Evt
× × •			ET_2000hds_Ext

Unforgettable KODAK Moments

First 2 Months of Operation

Series1

98.5

99.8

98.8

99.9

100

CMS Sub-detector Status

99.9

99.3

98.9

100

PRE- IOWER	STRIP TRACKE	PIXEL TRACKE	
	R	R	
99.8	98.1	98.2	

Zero and MinBias Triggers

- Beam Pick-up Timing
 - BPTX: ± 175m from IP
- Beam Scintillator Counters
 - BSC: ± 10.5m from IP
- HCAL Forward
 - HF: $2.5 \le |\eta| \le 5$.
- Trigger: Min Bias & Zero Bias
 - L1 Beam Scintillator Counters
 - L1 Trigger "BPTX" prescaled
- Minimum Bias selection:
 - BSC (OR 2 planes) + vertex: $\epsilon \sim 90\%$
 - HF (E > 3 GeV both sides): ε ~ 90%

CMS DAQ, L1 and HLT

L1/DAQ RUNS VERY WELL L1 ~ 1KHz, <500 kB/evt, HLT ~ 2% CPU loaded

Farm Capacity~100 ms/evt • CPU processing time at L1 rate of 50 kHz Up to now we have spent ~15 ms/event (min bias dominated)

Expect ~ 40 ms/event for a lumi of 10³⁰ cm⁻²s⁻¹ on average

Deployed trigger menus for (in development for $10^{30}-10^{31}$ cm⁻²/s) Rate predictions based on MC &

Primary datasets for 10²⁹cm⁻²/s

DATA Acquisition

save ipg					
CMS 30/03/10 Session Tue 13:17:05 126284	DAQ state Running	Run Number 132440	Lv1 rate 1.044 kHz	Ev. size 495.9 kB	DeadTim 0.0%
lhc1	Data	a to Surface		SM streams	top by #ev
	Sub-System	State FRL FED	IN Stream	No.Events Rate (Hz)	BnW (MB/
LHC Page1 Fill: 1005 E: 3500 GeV 30-03-2010 13:17:01	TRG I	Running 3 3	3 Calibration	379.676E+3 97.5	2 16.6
BEAM SETUP: FLAT TOP	CSC I	Running 9 9	9 EcalCalibrati	379.676E+3 97.5	6 2.0
Energy: 3500 GeV I(B1): 1.88e+10 I(B2): 1.74e+10	DAQ I	Running 0 0	0 A	262.205E+3 112.7	0 20.9
1927 Defension of the second s	DQM I	Running 0 0	0 Express	48.716E+3 37.8	7 7.5
LAILE	DT I	Running 11 11	11 ALCAPHISYM	7.090E+3 5.5	3 0.0
x3	ECAL I	Running 54 54	54 HLTMON	3.303E+3 2.0	2 0.3
11.00 11:45 12:00 12:15 12:30 12:03 12:03 12:15	ES I	Running 40 40	40 ALCAPO	684.000E+0 0.3	8 0.0
Dest	HCAL I	Running 32 32	32 OnlineErrors	26.000E+0 0.0	3 0.0
	PIXEL	Running 40 40	40 RPCMON	15.000E+0 0.0	0 0.0
Comments 30-03-2010 13:16:51 : BIS status and SMP Rays B1 82	RPC I	Running 3 3	3 Error	0.000E+0 0.0	0 0.0
Preparing for stable beams! Link Status of Beam Permits 60028 60088 Preparing to move collinmators IN Global Beam Permit; 60028 60028	SCAL I	Running 1 1	1		
Setup beam true true Beam Presence true true	TRACKER	Running 250 440	438		
Moveable Devices Allowed In Links Colors Stable Deams Stable Deams	CASTOR	Running 3 3	3		
LHC Operation In CCC : 77600, 70490 PM Status B1 ENABLED PM Status B2 ENABLED	X		0		
[Rate(kHz) Stored Accepted% CPU%] / Ti	ne				
1.1-				- 100	0.0% 1.1E+6
DeadTime(AB)			Run# 132440 his	apentime-wipdow_f300_f70	15.6
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	╶┧╠╌──┙╱─┅─┦	م می	16+0
0.9- Accepted				مر مر المر المر المر المر المر المر المر	9E+5
				مر المر – 10.	0% 8F+5
					0L+J
0.7- Stored events			1	مي ا	7E+5
£ 0.6−			المستعمرين الأليا	There are the second	6E+5
		and grand broat all br		- 1.0	%
					5E+5
0.4-		سمر <mark>ا</mark> مر			4E+5
		and the second se			<b>35</b> - 5
	-	and the second se		-0.1	% 3E+5
0.2-					2E+5
0.1-	1 S	æ			1E±5
					164.0
				- 0.0	% 0E+0
30/03/10 30/03/10				30/03/10	
UTC time 30/03/10 11:17:05	Local time:	Geneva 13:1	7, Los Ange	eles 04:17, Chio	ago 06:







## **CMS** Computing

- Smooth Data Handling
  - Over 2 billion RAW events processed
  - Stable Software and Reliable Infrastructure @Tier-0
- Tier-1s and Tier-2s making reliable contributions
  - All 7 Tier-1 fully participating (FNAL, CNAF, FZK, IN2P3, RAL, PIC, ASGC)
  - Many re-processing cycles handled very well
  - 49 T2s received collision data and 57 T2s participate in MC simulation
- > 465 users submitting jobs for analyses (and number increasing CMS PhEDEx Transfer Rate 45 Days from 2010-04-20 to 2010-06-04 • weekly)





### **Tracker Performance**









 Well understood uncertainties in tracking/vertexing Primary vertex resolution well modeled in simulation



## **PILE UP EVENTS@** $\mathcal{L}=10^{27}$ !





•Still rare but showing up

 Soon might become a major issue

•Plans for the luminosity increase of the machine seem to prefer 50ns high intensity bunches scheme.



### •Preparing for the future: pile up reconstruction of **4 pp interactions in one bunch crossing**

### **Mapping Inner Detector Material** with converted $\gamma$





■ Goal is to map ID material to better than 5% (using several methods) Reconstruction efficiency for Dalitz decays used to constrain beam-pipe thickness (in turn used as reference to estimate material in other layers)

















- $\Omega^{\pm} \rightarrow \Lambda K^{\pm}$
- $\Lambda K^{-}$  or anti- $\Lambda K^{+}$
- combinations fit to a common vertex
- $\Xi^{\pm} \rightarrow \Lambda \pi^{\pm}$ 

  - Common displaced vertex ( $L_{3D} > 10\sigma$ )



• tracks displaced from primary vertex  $(d_{3D} > 3\sigma)$ 



### **Reconstruction of Charm Mesons**









•Ongoing studies: momentum scale corrections and fine tuning the material description at few % *level*; Material description photon conv., nuclear interactions, multiple scattering, energy loss •Track reconstr. efficiency •Ratios of rates  $D^{o} \rightarrow K\pi / D^{o} \rightarrow K\pi\pi\pi$ (+ other methods)



## **B** Tagging

- **3D Impact parameter value and significance**
- **Selection:** 
  - tracks with Pt>1GeV belonging to jets with  $p_T > 40 \text{ GeV and } |\eta| < 1.5$  (*PFlow Jets anti-k*_T *R*=0.5).









### **Two Tagged b-jets Candidate**







## ECAL Clusters (e & y)









![](_page_31_Picture_6.jpeg)

![](_page_32_Figure_0.jpeg)

## **ECAL Calibration**

![](_page_32_Figure_2.jpeg)

Agreement on energy scale at ~1% level (width well modeled)  $\pi^0$  and  $\eta$  samples to improve further calibration and monitoring

![](_page_32_Picture_4.jpeg)

![](_page_33_Picture_0.jpeg)

### **JET Reconstruction**

•Three different Jet Reconstruction methods:

•Calorimeter Jets: Based on calorimeter tower

•Jet-plus-tracks Jets a posteriori corrections to calorimeter using tracks

Particle flow Jets

a priori use of tracks and
calorimeter

Identify charged hadrons,
photons, electrons, neutralhadrons

Default Jet Algorithm: Anti-kT, R=0.5

![](_page_33_Picture_7.jpeg)

CMS, December 2009, 2.36 TeV Run 124120 / Event 6613074 Particle Flow Reconstruction

### Jet 1 p_T = 22 GeV/c

![](_page_33_Figure_10.jpeg)

![](_page_33_Picture_11.jpeg)

### Jet 2 p_T = 42 GeV/c

Jet 3 p_T = 38 GeV/c

![](_page_34_Picture_0.jpeg)

## **Di-jet Candidate Events**

CMS Experiment at LHC, CERN Run 133450 Event 16358963 Lumi section: 285 Sat Apr 17 2010, 12:25:05 CEST

# Jet 1 p⊤ : 253 GeV Jet 2 p⊤ : 244 GeV Dijet mass : 764 GeV

![](_page_34_Figure_4.jpeg)

![](_page_34_Picture_5.jpeg)

![](_page_34_Picture_6.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_2.jpeg)

![](_page_36_Picture_0.jpeg)

## **CMS** Dijet Distributions

-Jets reconstructed with the anti- $k_T$  R=0.5 algorithm •Dijet selection : Jet Pt > 25 GeV,  $\Delta \Phi$  > 2.1,  $|\eta| < 3$  Loose ID cuts on number of components •Three different approaches: pure calorimetric, track corrected calo and particle flow.

![](_page_36_Figure_3.jpeg)

Figure: Data vs MC: Di jet mass  $m_{i1,i2}$  for Calorimeter Jets, JPT jets, PFjets.

![](_page_36_Picture_5.jpeg)

### Missing Transverse Energy (MET)

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

•MB studies - monitoring of core and tails (noise dominated)
•Good agreement with MC over many orders of magnitude
•Continuous improvement of MET tails

![](_page_37_Picture_4.jpeg)

![](_page_38_Picture_0.jpeg)

### **MET Resolutions**

![](_page_38_Figure_2.jpeg)

 E_T^{Miss} sensitive to calorimeter performance: noise, dead cells, cracks, mis-calibrations, beam backgrounds

![](_page_38_Figure_4.jpeg)

![](_page_39_Picture_0.jpeg)

## **MUON Reconstruction**

![](_page_39_Figure_2.jpeg)

![](_page_39_Picture_3.jpeg)

![](_page_39_Picture_4.jpeg)

35

p[GeV/c]

 $\psi \rightarrow \mu + \mu^{-}$  Reconstruction

![](_page_40_Figure_1.jpeg)

### **Excellent signal for :**

**Calibration** - momentum scale, reconstruction efficiency **Physics** - J/ $\psi$  production properties, B->J/ $\psi$  X reconstruction, lifetime measurements

![](_page_40_Picture_4.jpeg)

![](_page_40_Picture_5.jpeg)

![](_page_41_Picture_0.jpeg)

### Event Selection: loose electron requirements More difficult: larger backgrounds; tighter selections; reduced signal

![](_page_41_Figure_2.jpeg)

~93 events

![](_page_41_Picture_4.jpeg)

 $N^{\pm} \rightarrow e^{\pm}v$  Candidate Events

## **Event Selection:** Basic Electron ID, no MET

![](_page_42_Figure_2.jpeg)

37 W candidate events w/  $M_T > 50$  GeV

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

 $J^{\pm} \rightarrow \mu^{\pm} \nu$  Candidate Events

### **Event Selection:** Muon ID (Global+Tracker Mu), $|\eta| < 2.1$ , Pt, Isolation MC cross sections: normalized to 16nb-1 integrated luminosity

![](_page_43_Figure_2.jpeg)

57 W candidate events w/  $M_T > 50$  GeV

![](_page_43_Picture_4.jpeg)

![](_page_44_Picture_0.jpeg)

After all cuts

but  $E_{T}^{miss}$  and  $m_{T}$ 

### **ATLAS W Candidates**

![](_page_44_Figure_2.jpeg)

- - Event topology
  - Timing

## **Ongoing detail inspection:** Reconstruction quality

![](_page_44_Picture_8.jpeg)

![](_page_44_Picture_9.jpeg)

![](_page_45_Picture_0.jpeg)

## **Z->µ⁺µ⁻ Candidate Events**

### Event Selection: Loose Pt, Isolation and Muon id selection(Global +Tracker Mu), $|\eta| < 2.1$ MC cross sections: normalized to 16nb-1 integrated luminosity

![](_page_45_Figure_3.jpeg)

### 3 Z ->µ⁺µ⁻ candidate events

![](_page_45_Picture_5.jpeg)

![](_page_46_Picture_0.jpeg)

## **Z->e⁺e⁻ Candidate Events**

### **Event Selection:** Two super-clusters with Et>20GeV **MC cross sections:** normalized to 17nb⁻¹ integrated luminosity

![](_page_46_Figure_3.jpeg)

### 5 Z $\rightarrow$ e⁺e⁻ candidate events

![](_page_46_Picture_5.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

### **First CMS Publication @7TeV**

**"Transverse Momentum and Pseudorapidity Distributions of Charged Hadrons** in pp Collisions at  $\sqrt{s=7TeV}$ " arXiv:1005.3299 in PRL on 18 Jun 2010

![](_page_48_Figure_3.jpeg)

•Rise of the particle density at (2.36) 7 TeV steeper than model predictions Need for ongoing tuning of MC generators

![](_page_48_Picture_5.jpeg)

![](_page_49_Picture_0.jpeg)

## First Physics Run 2010-2011

Integrated L	SM Object	SM Use	S
mb ⁻¹ ( 1)	UE, MB	Tune MC	
μb ⁻¹ (10 ³ )	Jets, Heavy flavor	Align. dE/dx Calib, trigger valid, MET c, b tag leptons	
nb⁻¹ (10 ⁶ )	W Z	Cross section, charge Mass scale, resolution	V
1 pb ⁻¹ (10 ⁹ )	Top pairs	Leptons + J + true MET	D
10 pb ⁻¹			D Te
100 pb ⁻¹ (2010)			N N
1000 pb ⁻¹ (2011) (10 ¹² )			SI H G

PLAN: Rediscovering the Standard Model, followed by precision measurements... Then launch searches, starting with strongly produced final states.

![](_page_49_Picture_4.jpeg)

### earch Strategy

### Ne are here!

ijet & HSCP exceed Tevatron

ijet M > 2 TeV, LQ exceed evatron

/ > TeV W' , Z', ED lew range for SUSY

USY – TeV mass scale liggs @ 95% CL, (140,190) eV, BH, Technicolor

![](_page_50_Picture_0.jpeg)

## Conclusions

- **Rapid Commissioning of the LHC and Experiments** with Beams and Increased Luminosity
- Thank you to the LHC Team for Excellent **Performance and Operation for Physics!**
- LHC's leaps in energy and luminosity present enormous exploration opportunities
- Rediscovery of the Standard Model underway with **First LHC Publications**
- Excitement of Discoveries is arriving!
- I would like to thank G.Tonelli, F. Gianotti, A. de Roeck, D. Green and others for 51 material

![](_page_50_Picture_8.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_1.jpeg)

## END of presentation

![](_page_51_Picture_3.jpeg)