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OUTLINE:

THESE ARE EXCITING TIMES IN BIOLOGY:
NEW FRONTIERS, NEW TECHNOLOGIES,
CENTRAL ROLE FOR COMPUTATIONAL SCIENCE

a. INTRODUCTION TO MOLECULAR BIOLOGY OF THE
CELL: GENES, GENE EXPRESSION AND ITS
MEASUREMENT BY MICROARRAYS

b. WHAT CONTROLS GENE EXPRESSION?

a. THE HALLMARKS OF CANCER;
b. RESPONSE TO STIMULUS BY A GROWTH FACTOR

THE "EPIGENETIC CODE” AND REGULATION OF
TRANSCRIPTION



1. THESE ARE VERY EXCITING TIMES IN BIOLOGY!

articles
|

Initial sequencing and analysis of the
human genome

International Human Genome Sequencing Consortium*

t human development, physiology, medicine and evolution.
[i] e results of an international collaboration to produce and make freely available a draft sequence of the human
resent an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Lander et al, Nature Feb 15, 2001

SEQUENCING (A SINGLE) HUMAN GENOME:
15 YEARS, 3 BILLION $, THOUSANDS OF
MAN-YEARS

NEXT GENERATION SEQUENCING: TODAY’S COST 50,000%
IN 2 YEARS COST WILL COME DOWN TO 1000%

LANDER COMPARES THE REVOLUTION WE ARE WITNESSING TO THE
TRANSITION IN CARTOGRAPHY FROM MEDIEVAL MAPS TO GOOGLE
EARTH; IN CHEMISTRY TO BEFORE VS AFTER MENDELEYEV
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KNOWLEDGE OF THE HUMAN GENOME

1. OPENED NEW HORIZONS IN BIOLOGICAL DATA
ACQUISITION, FOLLOWED BY SUPER-EXPONENTIAL
PROGRESS IN DEVELOPMENT OF NEW TECHNOLOGIES

2. IDENTIFIED PROTEIN-CODING GENES (SURPRISINGLY
FEW ~20,000); REVEALED NEW REGULATORY REGIONS
AND MECHANISMS

3. COMPARATIVE GENOMICS: HUMANS VS MOUSE, RAT, .....
(CONSERVED ELEMENTS ARE IMPORTANT)

4. HUMAN-HUMAN DIFFERENCES — SNPs AND THEIR
ASSOCIATION WITH DISEASE

5. SYSTEMATIC APPROACH TO DISCOVER & UNDERSTAND
THE MOLECULAR MECHANISMS OF DISEASE (CANCER!)



MAJOR DISCOVERIES OF THE LAST DECADE:
1. THE RNA WORLD: microRNA, Long NonCoding RNA

2. CHROMATIN MODIFICATION PLAYS A CENTRAL REGULATORY
ROLE; EPIGENETICS

3. MOLECULAR STRATIFICATION OF CANCER
MAJOR NEW PROJECTS:

1. THE CANCER GENOME ATLAS (TCGA)

2. THE 1000 GENOME PROJECT

3. THE 10k VERTEBRATES GENOME PROJECT

4. GENOME-WIDE ASSOCIATION STUDIES OF MANY DISEASES
AND HUMAN TRAITS



2a. INTRODUCTION TO MOLECULAR BIOLOGY OF THE CELL



EUKARYOTIC CELLS:
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Chinese hamster ovary (CHO) cell Rat aortic smooth muscle cells
www.kent.edu/projects/cell/ www.kent.edu/projects/cell/

RIBOSOME

CARICATURE (FOR BIOLOGISTYS) CARICATURE (FOR PHYSICISTS)



GENE EXPRESSION: OVERVIEW

INTERESTING COMPLEX MULTI-SCALE STRUCTURE



DNA — Structure: From chromosome to chromatin to solenoid

Chromatin

A THRONG OF CHROMATIN. Inside the
cell nucleus, 46 strands of chromalin
form a tangled mass, not unlike a bowl
of microscopic spaghelti—excepl thal
each “noodle’ has an ornate internal
structure that can be fully appreciated
only when seen greatly magnified.

COILED AND COMPACT
FOR EFFICIENCY

Nucleus

COILS WITHIN COILS. A close
look at a strand ol chromatin re-
veals it to be a coll crealed from
a compactly folded strand of ma-
terial, which is itself an even fin-
er coil less Ihan a millionth of an
inch in diameter (above, right).

A SINGLE STRAND. Shown alone for
simplicity, this bit of chromatin bends
around and back on itsell many limes
inside the cell nucleus. In actuality,
other chromatin strands weave—ran-
domly, as far as anyone knows—be-
Iween the folds of this one and olhers.

Hislones

INSIDE THE SMALLEST COIL. The
minuscule DNA filamenl Irom
which chromalin is made can be
seen here as il coils twice around
a series of beadlike cores con-
sisting of eight prolein molecules
called histones. Together with a
single histone oulside the core,
these molecules exert the forces
that coil the beads togelher.

In order for the tens of thousands of
genes in the human genome to fit
comfortably Inside a cell nucleus a
mere six-thousandths of a millimeter
in diameter, they must be packed to-
gether very efficiently.

The stratagem for doing so begins
with a simple twisting of the DNA
strand, shortening it modestly, Then
come multiple coilings that further
shorten the package and thicken it
into a comparatively chunky filament
of chromatin. Some 15 times shorter
than the DNA strand in its relatively
fragile, uncoiled state and 250 times

thicker, chromatin is less susceptible
to damage inside the nucleus.

Often during the life cycle of a cell,
each chromatin strand must, in es-
sence, let down its defenses and un-
coil to perform its two crucial duties.
For example, strands relax to begin
the process of making the proteins
that are required by the functions of
particular cells (pages 44-45). They al-
so uncoil in order to make copies of
themselves as a cell heads toward di-
vision, at which point chromatin takes
on the even more compact, X-shaped
form of the chromosome.

THE ORIGINAL TWIST. A closer look at
the strand of DNA (above, right) clari-

fies its structure—a ladder shape con-
sisling of two twisted side rails linked

by innumerable chemical rungs.
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mosome to chromatin to solenoid to DNA

Chromatin

A THRONG OF CHROMATIN. Inside the
cell nucleus, 46 strands of chromalin
form a tangled mass, not unlike a bowl
of microscopic spaghelti—excepl thal
each “noodle’ has an ornate internal
structure that can be fully appreciated
only when seen greatly magnified.

COILED AND COMPACT
FOR EFFICIENCY

Nucleus

COILS WITHIN COILS. A close
look at a strand ol chromatin re-
veals it to be a coll crealed from
a compactly folded strand of ma-
terial, which is itself an even fin-
er coil less Ihan a millionth of an
inch in diameter (above, right).

A SINGLE STRAND. Shown alone for
simplicity, this bit of chromatin bends
around and back on itsell many limes
inside the cell nucleus. In actuality,
other chromatin strands weave—ran-
domly, as far as anyone knows—be-
Iween the folds of this one and olhers.

Hislones

INSIDE THE SMALLEST COIL. The
minuscule DNA filamenl Irom
which chromalin is made can be
seen here as il coils twice around
a series of beadlike cores con-
sisting of eight prolein molecules
called histones. Together with a
single histone oulside the core,
these molecules exert the forces
that coil the beads togelher.

In order for the tens of thousands of
genes in the human genome to fit
comfortably Inside a cell nucleus a
mere six-thousandths of a millimeter
in diameter, they must be packed to-
gether very efficiently.

The stratagem for doing so begins
with a simple twisting of the DNA
strand, shortening it modestly, Then
come multiple coilings that further
shorten the package and thicken it
into a comparatively chunky filament
of chromatin. Some 15 times shorter
than the DNA strand in its relatively
fragile, uncoiled state and 250 times

thicker, chromatin is less susceptible
to damage inside the nucleus.

Often during the life cycle of a cell,
each chromatin strand must, in es-
sence, let down its defenses and un-
coil to perform its two crucial duties.
For example, strands relax to begin
the process of making the proteins
that are required by the functions of
particular cells (pages 44-45). They al-
so uncoil in order to make copies of
themselves as a cell heads toward di-
vision, at which point chromatin takes
on the even more compact, X-shaped
form of the chromosome.

THE ORIGINAL TWIST. A closer look at
the strand of DNA (above, right) clari-

fies its structure—a ladder shape con-
sisling of two twisted side rails linked

by innumerable chemical rungs.




HUMAN GENOME - 23 PAIRS OF CHROMOSOMES:

NORMAL.:

CANCER:
(LEUKEMIA)

A CENTRAL THEME OF MY RESEARCH: DO CHROMOSOMAL
ABERRATIONS PLAY A CAUSAL ROLE IN CANCER?



DNA CONTAINS INFORMATION:
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GENE EXPRESSION: OVERVIEW

GENE =SEGMENT OF DNA = BLUEPRINT FOR A PROTEIN (or RNA....)
WHEN A GENE IS EXPRESSED, THE PROTEIN IT CODES FOR
IS SYNTHESIZED

EACH CELL CONTAINS ALL GENES !
NOT ALL GENES ARE "EXPRESSED” (DIFFERENTIATION,TIME)

PROTEIN SYNTHESIS TAKES PLACE AT
(...2009 Nobel Prize...) LOGISTIC PROBLEM!



INFORMATION TRANSFER FROM NUCLEUS TO RIBOSOME

TWO STEPS: 1. TRANSCRIPTION
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INFORMATION TRANSFER TO RIBOSOME
TWO STEPS: 2. TRANSLATION

ribosome subunits
released

ribosome mRNA
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WALK ALONG THE HUMAN GENOME:

3 10° base pairs; ~23,000 protein coding genes ~25% of genome; actual coding ~1.5%

Gene Gene JUN Kf;f;f;
I || |
27Kbp 100Kbp 27Kbp

UNDERSTANDING THIS TEXT
IS AMAJOR COMPUTATIONAL

CHALLENGE
Ex1 Intronl Ex2 Intron2
I |
145bp 2500bp 145bp 2500bp
Exon Intron Exon

| 5 UTR L 3 | |
N J. L S UTR X

Start of transcription  Start of translation End of translation End of transcription




Bycirie Central Dogma
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mMRNA Protein

Information stored |A gene is expressed when the mRNA
In Gene (DNA) and protein it codes for are produced

Cells express different subset of the genes
in different tissues and under different conditions




MEASURING GENE EXPRESSION PROFILE ~ 20-30,000 NUMBERS

WHEN A PARTICULAR GENE IS EXPRESSED,
THE CONCENTRATIONS OF ITS
CORRESPONDING MESSENGER RNA AND
PROTEIN ARE HIGH.

RIBOSOME

A DNA-CHIP MEASURES CONCENTRATIONS
OF THOUSANDS OF DIFFERENT

MESSENGER RNA

LATEST AFFYCHIPS: Human Gene 1.0 ST Array
measures concentration of 20-30,000 genes, using
764,885 “probes” (26 probes per gene)

HU Exon 1.0 ST - 1,425,647

Genome-wide Human SNP array 6.0; 1.8M probes (DNA CONTENT)
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Affymetrix Experimental Design

Extract _ ALrggleli;y, _ /\./[\\'If\'l /\/‘\'I
Fragment

MEASURE LIGHT Hybridize to
INTENSITY FROM microarray
EACH FEATURE , * o |
TO COMPOSE
EXPRESSION
LEVELS OF
~ 30,000 GENES

Scan




E3 Microsoft Excel - data.xls

File Edit Wiew Insert Format Tools Data  Window  Help
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COLON CANCER DATA:

E;j= EXPRESSION LEVEL OF GENE i gampe # 127—
IN SAMPLE }

\4

EACH PATIENT IS DESCRIBED BY 30,000
NUMBERS: ITS EXPRESSION PROFILE

AIMS: ASSIGN PATIENTS TO GROUPS ON THE
BASIS OF THEIR EXPRESSION PROFILES
(IDENTIFY CANCER SUBTYPEYS)

ASSIGN GENES TO FUNCTIONAL GROUPS
(DECIPHER MOLECULAR MECHANISMYS)

gene 400

IDENTIFY DIFFERENCES BETWEEN
TUMORS AT DIFFERENT STAGES
(PERSONALIZED PREDICTIVE MEDICINE)
IDENTIFY GENES THAT PLAY CENTRAL
ROLES IN DISEASE PROGRESSION

(DRUG DISCOVERY AND DESIGN)

MAJOR COMPUTATIONAL CHALLENGE
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2b. REGULATION OF EXPRESSION:
WHO DECIDES, AND HOW, THAT “IT IS TIME”

FOR A GENE TO BE EXPRESSED?

OR - WHAT TURNS A GENE ON?
1. TRANSCRIPTION FACTORS

2. ACCESSIBILITY OF THE DNA



AN ACTIVATOR PROTEIN .BINDS TO THE DNA AND INDUCES TRANSCRIPTION

A REPRESSOR PROTEINA BINDS TO THE DNA AND BLOCKS TRANSCRIPTION

Transcription

/\/\/\v ........ RNA

Translation l
Ribosome

DECIPHERING THE TF
“BINDING CODE” AND _
RULES ISAMAJOR %A Protein
COMPUTATIONAL P, 54
CHALLENGE

TRANSCRIPTION FACTORS BIND TO THE DNA AT BINDING SITES



TRANSCRIPTIONAL NETWORKS

GENE CODES FOR PROTEIN
PROTEINS ACTIVATE/SUPPRESS GENE TRANSCRIPTION

GET NETWORK THAT REGULATES THE RNA AND
PROTEIN CONTENT OF THE CELL

PROTEIN 1 » GENE 2 » PROTEIN 2

GENE 1 GENE 3 » PROTEIN 3




S. cerevisiae

Guzman-Vargas aSantillan BMC Systems Biology 2008

TRANSCRIPTIONAL REGULATORY NETWORK (Yeast):
@ Transcription Factors () Regulated Genes () Both (known)


http://www.biomedcentral.com/1752-0509/2/13/figure/F2

COMPUTATIONAL CHALLENGES:

1.

DEDUCTION OF NETWORK FROM DATA

GLOBAL CHARACTERISTICS (HUBS, POWER LAWS...)
OVER-REPRESENTED LOCAL MOTIFS

DENSE SUBSETS (MODULES)

TRANSCRIPTION FACTOR BINDING SITES ON DNA
TRANSCRIPTIONAL DYNAMICS

NETWORK EVOLUTION



3a. THE HALLMARKS OF CANCER:

CANCER = UNCONTROLLED GROWTH

1. VARIOUS REGULATORY NETWORKS PROTECT NORMAL
CELLS AGAINST UNCONTROLLED PROLIFERATION

2. THE BREAKDOWN OF THESE NETWORKS ARE THE
HALLMARKS OF CANCER
(4 + 2)

Hanahan & Weinberg
Cell 2000

SYSTEMATIC APPROACH TO
DISCOVER & UNDERSTAND
THE MOLECULAR
MECHANISMS OF CANCER
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6.

THE HALLMARKS OF CANCER (4 + 2)

SELF-SUFFICIENCY IN GROWTH SIGNALS
IGNORE ANTI-GROWTH SIGNALS

EVADE APOPTOSIS

IMMORTALIZATION

TWO MORE:

ANGIOGENESIS — GROWTH OF BLOOD VESSELS

METASTASIS — COLONIZATION OF VITAL ORGANS



1. SELF SUFFICIENCY IN GROWTH SIGNALS

Yy

PKC Mos MKKs—>JNKs > Jun
By . \

Growth Faciors Grb2

(e.q. EGF) - "scs" Ras —» Raf > MEK-> MAPK —> MAPK —> EIK—>Fos = | Changes
g. /ﬂ/ \‘M_?_d:Max——b in Gene
/ \-»

fl p
 Abl MEKK —— Myc:Max —————> Expression

Hormones " CdC42 —» Rac = Rho

(e.g. Bombesin) = (7-TMR l—P G-Prot-—>Ad Cycl > PKA ——————— CREB
|

(e.g. Estrogen) '

Normal signaling Cell membrane
cascade:

GF receptor : 7

I

NA Start
Cell cycle
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Hormones

CdC42 —>» Rac—>»Rhp = = = = = = = = == = _7
(e.g. Bombesin) = (7-TMR '—P G-Prot->Ad Cycl > PKA ————— CREB J

(e.g. Estrogen)

What can go wrong?

Autonomous
GF production

Growth Faciors Grb2
(e.3.TGF«) = (RTK)~>

SOS-’ Ras -» Raf > MEK-—> MAPK —> MAPK —> EIK—» Fos >

Yy

Y
PKC Mos MKKs—>JNKs—>» Jun
v ¥ A .

Changes
in Gene

\ Mad:Nax ——>
¥ Expression

A
\' MEKK —— Myc:Max ————>

/ A

i } §

|
| NHR (e.g. ER)

Cell membrane

GF receptor s

GF receptor

DNA Start

Cell cycle
Receptor

amplification

Effector
mutation

(ONCOGENE)




TARGETING THE FAMILY OF EGF RECEPTORS

EGF RECEPTOR ANOMALIES ARE IMPLICATED SEVERAL
CANCERS. AMPLIFICATION (GLIOBLASTOMA, BREAST,...)

TARGETING THE EGF RECEPTORS:

ERBITUX HERCEPTIN

IRESSA,
TARCEVA

|’F| 3K + AKT/PKB | (_Raz—+ MAPK)

PERSONAL DRUG SELECTION, DICTATED BY THE ANOMALY



4. THE “EPIGENETIC CODE” AND REGULATION OF

~

TRANSCRIPTION

The two main components
of the epigenetic code

St A 1. DNA METHYLATION
S 2. HISTONE MODIFICATIONS

IDENTICAL TWINS DO NOT
NECESSARILY GET THE
SAME “GENTICALLY DRIVEN"
DISEASES

it N (Esteller, Nature 2006)

molecules can attach to the ‘tails’
of proteins called histones, These

" zlter the activity of the DNA

wrapped around them.

EPIGENETIC SIGNALS
CONTROL DNA
ACCESSIBILITY ON ALL
SCALES



1. DNAMETHYLATION: SILENCES GENES, PASSES
TO DAUGHTER CELLS DURING DNA REPLICATION

Methyl group

NH,
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i [ DM 2 -
A renlic Stion
0 A replication
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ZH,

Methylation Methylation




Core of eigl‘ut
histone molecules

2. HISTONE MODIFICATIONS: ) Ao HistoneHi

TIGHT CLOSED PACKING OF
CHROMATIN DOES NOT ALLOW
ACCESS OF TRANSCRIPTION
FACTORS AND POLYMERASE TO
DNA. OPEN CHROMATIN ALLOWS
TRANSCRIPTION.

CHROMATIN PACKING IS
CONTROLLED BY HISTONE
MODIFICATIONS

Biochemist’s nucleosome



2. HISTONE MODIFICATIONS:
TRI - METHYLATION OF H3K4 AND H3K36 =>
=> OPEN CHROMATIN, TRANSCRIBED DNA

153 kb

.u.llu. PO TR R T Iy PO T P .‘l LJ R T l " §

D10Ertd322e

K<
me3
= e = Heart Brain
3 LincRNA-|
vo{” ]
Sy e— e

1.5 kb—»@ GAPDH

ok Ml
z=4 =

E=

Exon
300 bp—

100 bp—

Exon
300 bp -

E&l&l 1ooee

4

GENOME-WIDE IDENTIFICATION OF TRI-METHYLATED H3K4 — K36
LED TO DISCOVERY OF 1600 LONG INTERVENING NON-CODING RNA
IN MOUSE (Guttman et al Nature 2009)




THE GEOMETRY OF CHROMOSOME PACKING

Lieberman-Aiden, Mirny et al Science 2009



AT MEGABASE SCALE, THE CHROMATIN CONFORMATION IS
A FRACTAL GLOBULE (~HILBERT CURVE IN 3-d), KNOT-FREE,
ALLOWING MAXIMALLY DENSE PACKING WHILE PRESERVING
THE ABILITY TO EASILY FOLD AND UNFOLD ANY GENOMIC
LOCUS

U] PCUR

l\' | (:ﬂ [u [L)

(iﬂ,g (ol § Do |




SUMMARY:

. THESE ARE EXCITING TIMES IN BIOLOGY:

NEW FRONTIERS, NEW TECHNOLOGIES, CENTRAL ROLE
FOR COMPUTATIONAL SCIENCE

. a. INTRODUCTION TO MOLECULAR BIOLOGY OF THE

CELL: GENES, GENE EXPRESSION AND ITS
MEASUREMENT BY MICROARRAYS
b. WHAT CONTROLS EXPRESSION?

. a. THE HALLMARKS OF CANCER,;

b. RESPONSE TO STIMULUS BY A GROWTH FACTOR

THE "EPIGENETIC CODE” AND REGULATION OF
TRANSCRIPTION
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