

UNDERSTANDING THE HUMAN GENOME: EXCITEMENT, CHALLENGES AND OPPORTUNITIES

Eytan Domany Dept. of Physics of Complex Systems Weizmann Inst. of Science, Rehovot, ISRAEL

Villasimius, June 2010

http://www.weizmann.ac.il/physics/complex/compphys

OUTLINE:

- 1. THESE ARE EXCITING TIMES IN BIOLOGY: NEW FRONTIERS, NEW TECHNOLOGIES, CENTRAL ROLE FOR COMPUTATIONAL SCIENCE
- 2. a. INTRODUCTION TO MOLECULAR BIOLOGY OF THE CELL: GENES, GENE EXPRESSION AND ITS MEASUREMENT BY MICROARRAYS
 b. WHAT CONTROLS GENE EXPRESSION?
- 3. a. THE HALLMARKS OF CANCER;b. RESPONSE TO STIMULUS BY A GROWTH FACTOR
- 4. THE "EPIGENETIC CODE" AND REGULATION OF TRANSCRIPTION

1. THESE ARE VERY EXCITING TIMES IN BIOLOGY!

articles

Initial sequencing and analysis of the human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

Lander et al, Nature Feb 15, 2001

SEQUENCING (A SINGLE) HUMAN GENOME: 15 YEARS, 3 BILLION \$, THOUSANDS OF MAN-YEARS

NEXT GENERATION SEQUENCING: TODAY'S COST 50,000\$ IN 2 YEARS COST WILL COME DOWN TO 1000\$

LANDER COMPARES THE REVOLUTION WE ARE WITNESSING TO THE TRANSITION IN CARTOGRAPHY FROM MEDIEVAL MAPS TO GOOGLE EARTH; IN CHEMISTRY TO BEFORE VS AFTER MENDELEYEV

12th century copy of Ptolemeyan map of Sardinia

© 2010 Tele Atlas Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2010 DigitalGlobe © 2010 Europa Technologies 39°08'34.61" N 9°31'11.12" E elev 468 ft

N

Eye alt 61.23 mi 🔘

uristiche Alberghiere S.P.A.

Atahotel Tánka Village Golf & SPA Notteri

Imagery Date: Aug 30, 2007

© 2010 Tele Atlas Image © 2010 DigitalGlobe

Image © 2010 TerraMetrics 39°07'31.32" N 9°31'27.60" E elev 18 ft Google

0

Eye alt 6426 ft

Hotel Residence Palm Village Villasimius

Simius,

N

KNOWLEDGE OF THE HUMAN GENOME

- 1. OPENED NEW HORIZONS IN BIOLOGICAL DATA ACQUISITION, FOLLOWED BY SUPER-EXPONENTIAL PROGRESS IN DEVELOPMENT OF NEW TECHNOLOGIES
- IDENTIFIED PROTEIN-CODING GENES (SURPRISINGLY FEW ~20,000); REVEALED NEW REGULATORY REGIONS AND MECHANISMS
- 3. COMPARATIVE GENOMICS: HUMANS VS MOUSE, RAT, (CONSERVED ELEMENTS ARE IMPORTANT)
- 4. HUMAN-HUMAN DIFFERENCES SNPs AND THEIR ASSOCIATION WITH DISEASE
- 5. SYSTEMATIC APPROACH TO DISCOVER & UNDERSTAND THE MOLECULAR MECHANISMS OF DISEASE (CANCER!)

MAJOR DISCOVERIES OF THE LAST DECADE:

- 1. THE RNA WORLD: microRNA, Long NonCoding RNA
- 2. CHROMATIN MODIFICATION PLAYS A CENTRAL REGULATORY ROLE; EPIGENETICS
- 3. MOLECULAR STRATIFICATION OF CANCER

MAJOR NEW PROJECTS:

- 1. THE CANCER GENOME ATLAS (TCGA)
- 2. THE 1000 GENOME PROJECT
- 3. THE 10k VERTEBRATES GENOME PROJECT
- 4. GENOME-WIDE ASSOCIATION STUDIES OF MANY DISEASES AND HUMAN TRAITS

2a. INTRODUCTION TO MOLECULAR BIOLOGY OF THE CELL

EUKARYOTIC CELLS:

Chinese hamster ovary (CHO) cell www.kent.edu/projects/cell/

CARICATURE (FOR BIOLOGISTS)

Rat aortic smooth muscle cells www.kent.edu/projects/cell/

CARICATURE (FOR PHYSICISTS)

GENE EXPRESSION: OVERVIEW

INTERESTING COMPLEX MULTI-SCALE STRUCTURE

DNA – Structure: From chromosome to chromatin to solenoid

41

INSIDE THE SMALLEST COIL. The minuscule DNA filament from which chromalin is made can be seen here as it coils twice around a series of beadlike cores consisting of eight protein molecules called histones. Together with a single histone outside the core, these molecules exert the forces

that coil the beads togelher.

COILS WITHIN COILS. A close look at a strand of chromatin reveals it to be a coil created from a compactly folded strand of material, which is itself an even liner coil less lhan a millionth of an inch in diameter (above, right).

Physicist's nucleosome = basketball

HISTONE TAIL

Biochemist's nucleosome

From chromosome to chromatin to solenoid to DNA

THE ORIGINAL TWIST, A closer look at the strand of DNA (above, right) clarilies its structure-a ladder shape consisting of two twisted side rails linked by innumerable chemical rungs.

which chromatin is made can be seen here as it coils twice around a series of beadlike cores consisting of eight protein molecules called histones. Together with a single histone outside the core, these molecules exert the forces

that coil the beads togelher.

COILS WITHIN COILS. A close look at a strand of chromatin reveals it to be a coil created from a compactly folded strand of material, which is itself an even liner coil less than a millionth of an inch in diameter (above, right).

40

41

The second

HUMAN GENOME – 23 PAIRS OF CHROMOSOMES:

NORMAL:

CANCER: (LEUKEMIA)

A CENTRAL THEME OF MY RESEARCH: DO CHROMOSOMAL ABERRATIONS PLAY A **CAUSAL** ROLE IN CANCER?

DNA CONTAINS INFORMATION:

- TGACCGTTACATGGTGATGGTGCACCTGACTCCTGAGGAGGAGAGTCT

GENE EXPRESSION: OVERVIEW

- GENE = SEGMENT OF DNA = BLUEPRINT FOR A PROTEIN (or RNA....)
- WHEN A GENE IS EXPRESSED, THE PROTEIN IT CODES FOR IS SYNTHESIZED
- EACH CELL CONTAINS ALL GENES !!!
- NOT ALL GENES ARE "EXPRESSED" (DIFFERENTIATION, TIME)
 PROTEIN SYNTHESIS TAKES PLACE AT RIBOSOMES (...2009 Nobel Prize...)
 LOGISTIC PROBLEM!

INFORMATION TRANSFER FROM NUCLEUS TO RIBOSOME

TWO STEPS: 1. TRANSCRIPTION

INFORMATION TRANSFER TO RIBOSOME

TWO STEPS: 2. TRANSLATION

WALK ALONG THE HUMAN GENOME:

3 10⁹ base pairs; ~23,000 protein coding genes ~25% of genome; actual coding ~1.5%

Information stored In Gene (DNA) A gene is **expressed** when the mRNA and protein it codes for are produced

Cells express different subset of the genes in different tissues and under different conditions

MEASURING GENE EXPRESSION PROFILE ~ 20-30,000 NUMBERS

WHEN A PARTICULAR GENE IS EXPRESSED, THE CONCENTRATIONS OF ITS CORRESPONDING MESSENGER RNA AND PROTEIN ARE HIGH.

A DNA-CHIP MEASURES CONCENTRATIONS OF THOUSANDS OF DIFFERENT

MESSENGER RNA

LATEST AFFYCHIPS: Human Gene 1.0 ST Array measures concentration of 20-30,000 genes, using 764,885 "probes" (26 probes per gene)

HU Exon 1.0 ST – 1,425,647

Genome-wide Human SNP array 6.0; 1.8M probes (DNA CONTENT)

Hybridization

🔀 Microsoft Excel - data.xls	
File Edit View Insert Format Tools Data Window Help	Т
	- 2
	· u, .
Arial • 10 • B I U ≣ ≣ ≣ 🗹 M • \$ % , to +00 ∰	🛿 译 🔄 + 🙅 + 🚣 + 🚬
🍋 😓 🐄 🌃 📭 🌆 🖓 👪 😭 🗫 Reply with Chapters End Review	
	557 1
2 200000_s_at	1748.2
4 200002 at	3503.5
5 200003 s at	5252.4
6 200004 at	2193
7 200005 at	1634.7
8 200006 at	920.4
9 200007 at	1824.4
10 200008_s_at	627.5
11 200009_at	1888.7
12 200010_at	2739.6
13 200011_s_at	567.4
14 200012_x_at	3693.1
15 200013_at	4867.8
16 200014_s_at	411.6
17 200015_s_at	1338.3
18 200016_x_at	4979.7
19 200017_at	3608.9
20 200018_at	4181.3
21 200019_s_at	4217.0
22 200020_at	420.3
24 200021_at	4355.5
25 200022_at	1549.3
26 200023_s_ut	3305.8
27 200025 s at	4597.4
28 200026 at	4973.1
29 200027 at	1409.6
30 200028 s at	676.5
31 200029_at	3846.4
32 200030_s_at	1636.1
33 200031 s at	6888

Microsoft Excel - data.xls															
8	<u>F</u> ile <u>E</u> dit	⊻iew	Insert	F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow	Help								
	🛋 🗖 🖶		1 13 189	X 🗈 f	🖱 🗸 🛷 🛛 🖌		🦲 Σ 🖌 🛔	1 Z1 40	A 100%	• 2					
-				00 45 6				* A*		· • •					
Ari	al		- 10 -	BI	<u>⊓</u> ≣ ≣		D ▶¶ - 9	β%,	•.0 .00 €≣	• •	🕗 - 🗛	• •			
*-	🐜 🛤 🕅 📭 🐜 🛛 🗔 🚱 Reply with Changes End Review														
-															
		A	<i>,x</i>		0	D	E	F	C	Ц			LZ.		M
1	AffolD	<u>A</u>		ם מסווסאגמווסמ		כםו ובכפחת	008381100	Г А5371НD3		00300803	1 00194AD0	J 00915AD1	N 03283AD1	03510AD2	03531 A D 2 03
2	200000 *	ot		2,70004000	383 G	177 5	330 Q	322.8	3/8.6	557 1	02104AR2 380 3	52015ART	03203ART 267.5	00010ARZ 253-1	596 6
3	200000_3_ 200001_st	a		633.8	806.2	740.7	915.6	1244.1	678.7	1748.2	1217.6	1085.4	1022.7	1364	1152.9
	200001_at			3400.8	3007.2	3133.7	4032.3	2521.8	1906.7	3503.5	3218.3	2724	3775.7	2550.4	2944.3
5	200003_s	at		4131.6	4439.9	4445.1	4878.7	3257.8	2699.6	5252.4	4450.6	4335.1	4861.3	3428.2	3600.5
6	200004 at			1612.1	1310.8	1211.7	2241.2	2127.4	1525.4	2193	2099.9	1896.4	1750.1	2170.2	1889.7
7	200005 at			1113.7	1323	731.8	1265.7	555.5	482.9	1634.7	818.3	916	1337.3	850.1	1073.8
8	200006 at			1151.1	978.8	1549.7	1632.9	1448	1855.8	920.4	1627.6	1681	2119.9	1973.3	1916.9
9	200007 at			1051.6	988.7	1363.4	1131.3	1716.2	1323.7	1824.4	1646	1862.5	1679.2	1479.7	1691.6
10	200008_s	at		133	294.6	347.2	218.1	782.7	558.9	627.5	753.7	771.3	922	679.3	1088.2
11	200009_at			521.5	904.3	1222.7	820.5	1518.1	1385.1	1888.7	1416.5	1501.9	1691.8	1532.7	1888.8
12	200010_at			1815.9	1483.8	2425.7	2672.4	2578.7	2045.3	2739.6	3015.2	2424.3	3916	1608.3	2970.5
13	200011_s_	at		744.8	483.4	451.3	555.3	1018.7	279.1	567.4	438.9	452.2	489.8	718.3	539.6
14	200012_x_	at		1931.5	3217.9	3720.1	2565.9	3089.1	3140.6	3693.1	4154	4533.5	4471.1	2629.5	3260.2
15	200013_at			3400.9	3817.9	4032.6	4113.5	2621	2710.6	4867.8	3678.9	3406.5	3718.5	2806.5	3146.7
16	200014_s_	at		509	456.8	340.9	625.5	411.8	466.6	411.6	488.3	454.8	651.1	709.6	733.3
17	200015_s_	at		1323.1	1181.6	1014.6	1117	830	599.2	1338.3	1115.3	1296.2	1199.6	982.6	977.4
18	200016_x_	at		2477.3	2920.4	2832.4	3546.8	3128.6	1770.1	4979.7	3707.6	2895.6	3898.4	2332.7	3923.2
19	200017_at			2997.7	2231.5	3292.5	3659.5	3204.1	2507.2	3608.9	4830.1	4017	4477.7	3380.7	3762.4
20	200018_at			4566.5	4903	3459	4152.2	3491.4	3507.9	4181.3	4629.1	4723	4170.8	3373.4	4067.7
21	200019_s_	at		5019.8	4420.3	3201.1	4148.2	2785.2	3126.8	4217.6	3047	2637.9	3361.3	2836.8	3328.3
22	200020_at			627.2	449	593.8	589.6	497.4	340.5	426.9	490.1	510.4	698.8	658.5	669.5
23	200021_at			8//3.2	8539.b	6521.3	6543.2	5513.b	3511.7	5143.7 ADEC C	6145.4	5306.4 5505.5	5/3/.9	4173.5	4557.7
24	200022_at	-+		3300.9	4028.1	3490.3	4832.2 1000 5	2944.5 1175 A	2436.4	4355.5	3040.1	2582.5	3200.9	2/ 30.2	3520.8
25	200023_S	at		1094.0	1004.9 1720 5	1015 0	1090.5	11/5.4	1710.0	1549.3	2010 4	2211.0	1250.7	1007.6	1210.0
20	200024_at	ot.		10/5.3	17-30.5 ESES	2404 5	Z/ 10.Z	2240.0	2015 7	3305.0 AEQ7_A	3919.4	3311.2 4100.6	4007.0 2010.0	1907.0	2002.0
27	200025_5	a		5905 2	7854.7	4/20 A	4500.7 6630 Q	AE33 3	30210.7	4057.4	4009 5098 /	4103.0	5537.5	3676.1	J/55.5
20	200020_at			1288.3	1120.6	1017.6	1061.2	4555.5	622.4	1/09.6	802	935.5	773.4	1133.7	1970.6
30	200027_at	at		657.2	516	644.9	554.1	639.2	831.7	676.5	716.4	588.7	711.8	426.6	80.8
31	200020_s	, at		4631.1	5165.4	5222.9	4355.2	2452.8	3318.1	3846.4	3363.2	3675.6	4674	3130.1	2966.1
32	200030 s	at		907.1	912.7	970.4	1469.5	2630.1	2293.7	1636.1	1970 7	1910.9	2227	1410	2604.2
33	200031 *	at		5538.1	5656.6	5459.5	5825.3	5401.9	4129.8	6888	6548.4	5618.8	6227.1	4659	4759.2

COLON CANCER DATA: $E_{ij} = \text{EXPRESSION LEVEL OF GENE } i$ IN SAMPLE j

Sample # 127-

EACH PATIENT IS DESCRIBED BY 30,000 NUMBERS: ITS EXPRESSION PROFILE

AIMS: ASSIGN PATIENTS TO GROUPS ON THE BASIS OF THEIR EXPRESSION PROFILES (IDENTIFY CANCER SUBTYPES) ASSIGN GENES TO FUNCTIONAL GROUPS (DECIPHER MOLECULAR MECHANISMS) IDENTIFY DIFFERENCES BETWEEN TUMORS AT DIFFERENT STAGES (PERSONALIZED PREDICTIVE MEDICINE) IDENTIFY GENES THAT PLAY CENTRAL ROLES IN DISEASE PROGRESSION (DRUG DISCOVERY AND DESIGN)

MAJOR COMPUTATIONAL CHALLENGE

BASAL, ERBB2/HER2+, NORMAL-LIKE LUMINAL A/B/C

Sorlie et al PNAS 2001

2b. REGULATION OF EXPRESSION:

WHO DECIDES, AND HOW, THAT "IT IS TIME" FOR A GENE TO BE EXPRESSED?

OR - WHAT TURNS A GENE ON?

1. TRANSCRIPTION FACTORS

2. ACCESSIBILITY OF THE DNA

AN ACTIVATOR PROTEIN BINDS TO THE DNA AND INDUCES TRANSCRIPTION

TRANSCRIPTION FACTORS BIND TO THE DNA AT BINDING SITES

TRANSCRIPTIONAL NETWORKS

GENE CODES FOR PROTEIN

PROTEINS ACTIVATE/SUPPRESS GENE TRANSCRIPTION

GET NETWORK THAT REGULATES THE RNA AND PROTEIN CONTENT OF THE CELL

S. cerevisiae

Guzmán-Vargas aSantillán BMC Systems Biology 2008

TRANSCRIPTIONAL REGULATORY NETWORK (Yeast):
 Transcription Factors
 Regulated Genes
 Both (known)

COMPUTATIONAL CHALLENGES:

- 1. DEDUCTION OF NETWORK FROM DATA
- 2. GLOBAL CHARACTERISTICS (HUBS, POWER LAWS...)
- 3. OVER-REPRESENTED LOCAL MOTIFS
- 4. DENSE SUBSETS (MODULES)
- 5. TRANSCRIPTION FACTOR BINDING SITES ON DNA
- 6. TRANSCRIPTIONAL DYNAMICS
- 7. NETWORK EVOLUTION

3a. THE HALLMARKS OF CANCER:

CANCER = UNCONTROLLED GROWTH

- 1. VARIOUS REGULATORY NETWORKS PROTECT NORMAL CELLS AGAINST UNCONTROLLED PROLIFERATION
- 2. THE BREAKDOWN OF THESE NETWORKS ARE THE HALLMARKS OF CANCER
 (4+2)

Hanahan & Weinberg Cell 2000

SYSTEMATIC APPROACH TO DISCOVER & UNDERSTAND THE MOLECULAR MECHANISMS OF CANCER

THE HALLMARKS OF CANCER (4 + 2)

- 1. SELF-SUFFICIENCY IN GROWTH SIGNALS
- 2. IGNORE ANTI-GROWTH SIGNALS
- 3. EVADE APOPTOSIS
- 4. IMMORTALIZATION

TWO MORE:

5. ANGIOGENESIS – GROWTH OF BLOOD VESSELS

6. METASTASIS – COLONIZATION OF VITAL ORGANS

1. SELF SUFFICIENCY IN GROWTH SIGNALS

1. SELF SUFFICIENCY IN GROW SIGNALS

TARGETING THE FAMILY OF EGF RECEPTORS

EGF RECEPTOR ANOMALIES ARE IMPLICATED SEVERAL CANCERS. AMPLIFICATION (GLIOBLASTOMA, BREAST,...)

TARGETING THE EGF RECEPTORS:

PERSONAL DRUG SELECTION, DICTATED BY THE ANOMALY

4. THE "EPIGENETIC CODE" AND REGULATION OF TRANSCRIPTION

The two main components of the epigenetic code DNA methylation Me Methyl marks added to certain DNA bases repress gene activity. Histone tails Histone modification A combination of different molecules can attach to the 'tails' of proteins called histones. These Histones alter the activity of the DNA wrapped around them. Chromosome

DNA METHYLATION HISTONE MODIFICATIONS

IDENTICAL TWINS DO NOT NECESSARILY GET THE SAME "GENTICALLY DRIVEN" DISEASES (Esteller, Nature 2006)

EPIGENETIC SIGNALS CONTROL DNA ACCESSIBILITY ON ALL SCALES

1. DNA METHYLATION: SILENCES GENES, PASSES TO DAUGHTER CELLS DURING DNA REPLICATION

2. HISTONE MODIFICATIONS:

TIGHT CLOSED PACKING OF CHROMATIN DOES NOT ALLOW ACCESS OF TRANSCRIPTION FACTORS AND POLYMERASE TO DNA. OPEN CHROMATIN ALLOWS TRANSCRIPTION.

CHROMATIN PACKING IS CONTROLLED BY HISTONE MODIFICATIONS

Physicist's nucleosome = basketball

Biochemist's nucleosome

2. HISTONE MODIFICATIONS: TRI - METHYLATION OF H3K4 AND H3K36 => => OPEN CHROMATIN, TRANSCRIBED DNA

GENOME-WIDE IDENTIFICATION OF TRI-METHYLATED H3K4 – K36 LED TO DISCOVERY OF 1600 LONG INTERVENING NON-CODING RNA IN MOUSE *(Guttman et al Nature 2009)*

THE GEOMETRY OF CHROMOSOME PACKING

Lieberman-Aiden, Mirny et al Science 2009

AT MEGABASE SCALE, THE CHROMATIN CONFORMATION IS A FRACTAL GLOBULE (~HILBERT CURVE IN 3-d), KNOT-FREE, ALLOWING MAXIMALLY DENSE PACKING WHILE PRESERVING THE ABILITY TO EASILY FOLD AND UNFOLD ANY GENOMIC LOCUS

SUMMARY:

- 1. THESE ARE EXCITING TIMES IN BIOLOGY: NEW FRONTIERS, NEW TECHNOLOGIES, CENTRAL ROLE FOR COMPUTATIONAL SCIENCE
- 2. a. INTRODUCTION TO MOLECULAR BIOLOGY OF THE CELL: GENES, GENE EXPRESSION AND ITS MEASUREMENT BY MICROARRAYS
 b. WHAT CONTROLS EXPRESSION?
- 3. a. THE HALLMARKS OF CANCER;b. RESPONSE TO STIMULUS BY A GROWTH FACTOR
- 4. THE "EPIGENETIC CODE" AND REGULATION OF TRANSCRIPTION

Funding and support:

NIH, EC/RTN, EC/6FW, ISF, GIF, Bikura, IMOS/Tashtiyot, Ridgefield, Minerva, Levine, Wolfson Foundations, DIP

Collaborators and teachers:

Weizmann: D. Givol, L. Sachs, E. Canaani, V. Rotter, Y. Yarden, M. Oren, E.Tzahor, D. Lancet, A. Ben-Zeev, B. Geiger, A. Gross, Z. Eshhar, I. Cohen
Memorial SKMC P. Paty
Cornell Med Sch F. Barany
Princeton D. Notterman
CHUV Lausanne: M. Hegi, R. Stupp
Regina Elena, Rome: G. Blandino
Sheba Med C. G. Rechavi, S. Izraeli
Hadassa MC E. Galun, D. Gazit

Students & postdocs:

L. Mirny, M. Blatt, S. Wiseman, M. Vendruscolo, E. Kussell, G. Getz, E. Levine, M. Sheffer, L. Hertzberg, H. Gal, I. Kela, L. Ein-Dor, O. Zuk, Y. Tabach, M. Golan, T. Shay, A. Zeisel, Y. Drier, N. Bossel, M. Koudritzky, Y. Horesh, D. Netanely