Magnetic Moment of Negative-Parity Baryons from Lattice QCD

Frank X. Lee
Andrei Alexandru
George Washington University

- Physics motivation
- Background field method
- Some results

Thanks: U.S. Department of Energy, National Science
Foundation, and computing resources from NERSC and
 USQCD

Excitations of the Nucleon

Octet Baryons

State (spinparity)	Mass (MeV)	$\mu(\operatorname{Expt})\left(\mu_{\mathrm{N}}\right)$
p (1/2 +)	N(938)	2.79
p* (1/2-)	$\mathrm{S}_{11}{ }_{11}(1535)$	
$\mathrm{n}(1 / 2+)$		- 1.91
n* (1/2-)	$\mathrm{S}^{0}{ }_{11}(1535)$	
$\Lambda_{0}(1 / 2+)$	$\Lambda(1115)$	-0.61
$\Lambda^{*}{ }_{\mathrm{O}}(1 / 2-)$	$\Lambda(1670)$	
$\Lambda_{\text {S }}(1 / 2-)$	Λ (1405)	
$\Lambda^{*}{ }_{\text {S }}(1 / 2+)$	Λ (?)	
$\Sigma^{+}(1 / 2+)$	$\Sigma(1190)$	2.9
$\Sigma^{+*}(1 / 2-)$		
$\Sigma^{0}(1 / 2+)$		0.8
$\Sigma^{0 *}(1 / 2-)$		
$\Sigma^{-}(1 / 2+)$		- 1.5
$\Sigma^{-*}(1 / 2-)$		

Hadron Structure via Background Fields

 Interaction energy of a hadron in the presence ofexternal electromagnetic fields:

$$
\begin{aligned}
& H=-\vec{\mu} \cdot \overrightarrow{\boldsymbol{B}}-\frac{1}{2} \alpha E^{2}-\frac{1}{2} \beta \boldsymbol{B}^{2} \\
& -\frac{1}{2} \gamma_{E 1} \sigma \cdot \overrightarrow{\boldsymbol{E}} \times \dot{\vec{E}}-\frac{1}{2} \gamma_{M 1} \sigma \cdot \overrightarrow{\boldsymbol{B}} \times \dot{\vec{B}} \\
& +\gamma_{E 2} \sigma_{i} E_{i j} B_{j}-\gamma_{M 2} \sigma_{i} B_{i j} E_{j} \\
& -\frac{1}{12} \alpha_{E 2} E_{i j}^{2}-\frac{1}{12} \beta_{M 2} B_{i j}^{2}+\cdots
\end{aligned}
$$

Time and spatial derivatives : $\dot{E}=\frac{\partial E}{\partial t}, E_{i j}=\frac{1}{2}\left(\nabla_{i} E_{j}+\nabla_{j} E_{i}\right)$, etc

Probe of internal structure of the system in increasingly finer detail.
μ, α, β :
static bulk response
others :
spatial and time resolution

Mass shifts: $\quad \delta m(B)=m(B)-m(0)=c_{1} B+c_{2} B^{2}+c_{3} B^{3}+c_{4} B^{4}+\cdots$

Introduction of an external electromagnetic field on the lattice

- Minimal coupling in the QCD covariant derivative in Euclidean space $\quad D_{\mu} \rightarrow \partial_{\mu}+g G_{\mu}+q A_{\mu}$
- Recall that $\operatorname{SU}(3)$ gauge field is introduced by the link variables

$$
U_{\mu}(x)=\exp \left(\operatorname{iag} G_{\mu}\right)
$$

- It suggests multiplying a $\mathrm{U}(1)$ phase factor to the links

$$
U_{\mu}^{\prime}(x)=\exp \left(\operatorname{iaq}_{\mu}\right) U_{\mu}
$$

- This should be done in two places where the Dirac operator appears: both in the dynamical gauge generation and quark propagator generation

For Example

- To apply magnetic field B in the z-direction,

$$
\overrightarrow{\boldsymbol{B}}=\nabla \times \overrightarrow{\boldsymbol{A}}
$$

$$
\vec{E}=-\nabla \phi-\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial \boldsymbol{t}}
$$ one can choose the 4 -vector potential

$$
A_{\mu} \equiv(\phi, \vec{A})=(\mathbf{0}, \mathbf{0}, B x, 0)
$$

then the y -link is modified by a x -dependent phase factor

$$
U_{y} \rightarrow \exp (i q a B x) U_{y}
$$

- To apply electric field E in the x-direction, one can choose the 4 -vector potential

$$
A_{\mu}=(\mathbf{0}, E t, \mathbf{0}, \mathbf{0})
$$

then the x -link is modified by a t-dependent phase factor

$$
U_{x} \rightarrow \exp (i q a E t) U_{x}
$$

Computational Demands

$U_{y} \rightarrow \exp (i q a B x) U_{y}$

- Consider quark propagator generation

$$
\int D G_{\mu} \operatorname{det}\left(D+m_{q}\right) e^{-S_{c}}\left(D+m_{q}\right)^{-1}
$$

$$
D_{\mu} \rightarrow \partial_{\mu}+g G_{\mu}+q A_{\mu}
$$

$$
\int D G_{\mu} \operatorname{det}\left(D+m_{q}\right) e^{-S_{c}}
$$

- Fully dynamical: For each value of external field, a new dynamical ensemble is needed that couples to u-quark ($\mathrm{q}=1 / 3$), d - and s-quark $(\mathrm{q}=-2 / 3)$ in the sea. Valence quark propagator is then computed on the ensembles with matching values.
- Re-weighting: Perturbative expansion of action in terms of external field. Can use existing dynamical ensembles.
- $\mathrm{U}(1)$ quenched: no charging the sea, only coupling to the valence on:
- Dynamical QCD ensembles
- Quenched QCD ensembles

What about boundary conditions?

- On a finite lattice with periodic boundary conditions, to get a constant magnetic field, B has to be quantized

$$
q B a^{2}=\frac{2 \pi n}{N_{x} N_{y}}, \quad n=1,2,3, \cdots
$$

to ensure that the magnetic flux through the plaquettes in the $x-y$ plane is constant.

- But, for $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}=24$ and $1 / \mathrm{a}=2 \mathrm{GeV}$, the quantized field values are too strong for small-field expansion. So we have to abandon the quantization condition, and work with much smaller fields.
- To minimize the boundary effects, we work with fixed b.c. in xdirection, so that quarks originating in the middle of the lattice has little chance of propagating to the edge.

Magnetic moment in background field

- For a particle of spin s and mass m in small fields,

$$
\boldsymbol{E}_{ \pm}=\boldsymbol{m} \pm \mu \boldsymbol{B}
$$

where upper sign means spin-up and lower sign spindown, and

$$
\mu=g \frac{e}{2 m} s
$$

- g factor (magnetic moment in natural magnetons) is extracted from

$$
g=m \frac{\left(E_{+}-m\right)-\left(E_{-}-m\right)}{e B s}
$$

Lattice details

- Standard Wilson gauge action
- $24^{3} \times 48$ lattice, $\beta=6.0$ (or $a \approx 0.1 \mathrm{fm}$)
- 990 configurations
- Standard Wilson fermion action
- Set 1: Pion mass about 500, 646, 782, 894, 1010, 1434 MeV
- Set 2: Pion mass about 338, 362, 384, 405, 444, 693 MeV
- Boundary conditions: Dirichlet in x, y and t , periodic in z
- Quark source location $(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})=(0,12,12,12)$
- Polyakov loop origin $x_{0}=12$
- The following 5 dimensionless numbers $\eta \equiv \mathrm{qBa}{ }^{2}=+0.00036,-0.00072$, $+0.00144,-0.00288,+0.00576$ correspond to 4 small B fields $\mathrm{eBa}^{2}=-0.00108,0.00216,-0.00432,0.00864$ for both u and d (or s) quarks.
- Small in the sense that the mass shift is only a fraction of the proton mass: $\mu \mathrm{B} / \mathrm{m}$ ~ 1 to 5% at the smallest pion mass. In physical units, $\mathrm{B} \sim 10^{13}$ Tesla.

Baryon Two-point Correlation Function

$$
\begin{aligned}
& G(t)=\sum_{\bar{x}}\left\langle\mathrm{vac} \mid T\left[\chi_{1}(x) \overline{\chi_{1}}(0)\right] \mathrm{vac}\right\rangle \\
& =\left(1+\gamma_{4}\right)\left[A_{+} e^{-m_{+}\left(t-t_{0}\right)}+b A_{-} e^{-m_{-}\left(N_{t}+t_{0}-t\right)}\right] \\
& +\left(1-\gamma_{4}\right)\left[b A_{+} e^{-m_{+}\left(N_{t}+t_{0}-t\right)}+A_{-} e^{-m_{-}\left(t-t_{0}\right)}\right]
\end{aligned}
$$

$$
\text { b = } 0 \text { fixed (Dirichlet) }
$$

$$
\mathrm{b}=1 \text { periodic }
$$

b = -1 anto-periodic

$$
\chi_{1}=\varepsilon_{a b c}\left(u^{a T} C \gamma_{5} d^{b}\right) u^{c}
$$

Effective mass plots for $\mathbf{N}(1 / 2+)$ and $N^{*}(1 / 2-)$ states

- Good signal for N(1/2+): fit 17-26
- Noisy signal for N(1/2-): fit 10-14

Masses for $\mathrm{N}(1 / 2+)$ and $\mathrm{N}^{*}(1 / 2-)$ states

Ratio of correlation functions for $\mathrm{p}(1 / 2+)$ and $\mathrm{p}^{*}(1 / 2-)$ (slope is related to g factor)

$$
\begin{aligned}
& R(t)=\frac{G_{+}(B)}{G_{-}(B)} / \frac{G_{+}(-B)}{G_{-}(-B)} \\
& \propto e^{-2 \Delta m t}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta m=\left[E_{+}(B)-E_{-}(B)\right] \\
& -\left[E_{+}(-B)-E_{-}(-B)\right] \\
& =g \frac{e B s}{m}
\end{aligned}
$$

Opposite sign

$m_{\pi}=384 . \mathrm{MeV}$

$m_{\pi}=444 . \mathrm{MeV}$

$m_{\pi}=362 . \mathrm{Me}$

$m_{\pi}=405 . \mathrm{MeV}$

$m_{\pi}=693 . \mathrm{MeV}$

Magnetic Moments for $p(1 / 2+)$ and $p *(1 / 2-)$ states

Ratio of correlation functions for $\mathrm{n}(1 / 2+)$ and $\mathrm{n}^{*}(1 / 2-)$

 (slope is related to g factor)

Magnetic moments for $\mathbf{n}(\mathbf{1} / \mathbf{2 +})$ and \mathbf{n} *(1/2-) states

Masses for Octet $\Lambda_{0}(1 / 2+)$ and $\Lambda^{*}{ }_{0}(1 / 2-)$ states

Magnetic Moments for Octet $\Lambda_{0}(1 / 2+)$ and $\Lambda^{*}(1 / 2-)$

Effective mass plots for $\Lambda_{S}(1 / 2-)$ and $\Lambda^{*}(1 / 2+)$

- Good signal for $\Lambda_{\mathbf{s}}(\mathbf{1} / 2-)$: fit 12-15
- Noisy signal for $\Lambda^{*}{ }_{\mathrm{s}}(1 / 2+)$: fit 8-12

Masses for singlet $\Lambda_{\mathrm{s}}(\mathbf{1} / 2-)$ and $\Lambda^{*}{ }_{\mathrm{s}}(1 / 2+)$ states

Ratio of correlation functions for $\Lambda_{s}(1 / 2-)$ and $\Lambda^{*}{ }_{s}(1 / 2+)$

$\Lambda_{S}(1 / 2-) \sim$ zero
$\Lambda^{*}{ }_{s}(1 / 2+) \sim$ zero but noisy

Ratio of correlation functions for $\Sigma^{+}(1 / 2+)$ and $\Sigma^{+*}(1 / 2-)$

Non-linear behavior :
$R(t) \propto e^{-2\left(\Delta m t+E_{1} t^{3}\right)}$

$m_{\pi}=894 . \mathrm{MeV}$

$m_{\pi}=1010 . \mathrm{MeV}$

Ratio of correlation functions for $\Sigma(1 / 2+)$ and $\Sigma^{*}(1 / 2-)$

Ratio of correlation functions for $\Sigma^{0}(\mathbf{1} / 2+)$ and $\Sigma^{0 *}(\mathbf{1} / 2-)$

Octet Baryons

State (spinparity)	Mass (MeV)	$\begin{aligned} & \mu(\text { Expt }) \\ & \left(\mu_{\mathrm{N}}\right) \end{aligned}$	$\begin{aligned} & \mu \text { (Lattice } \\ & \text { QCD) } \end{aligned}$	$\mu \text { (Unitary }$ $\chi \text { (PT) }$	μ (Quark Model)
p (1/2 +)	N (938)	+2.79	$\sim+2.8$		
p* (1/2-)	$\mathrm{S}^{1}{ }_{11}(1535)$		~-1.0	+ 1.1	+ 1.9
$\mathrm{n}(1 / 2+)$	N (938)	-1.91	~-1.9		
n* (1/2-)	$\mathrm{S}_{11}^{0}(1535)$		~-0.5	-0.25	-1.2
$\Lambda_{0}(1 / 2+)$	$\Lambda(1115)$	-0.61	~-0.6		
$\Lambda^{*}{ }_{0}(1 / 2-)$	$\Lambda(1670)$		~-0.3	- 0.29	$+0.28$
$\Lambda_{\mathrm{S}}(1 / 2-)$	$\Lambda(1405)$		~ 0	0.24 to 0.45	+0.04
$\Lambda^{*}{ }_{\mathrm{S}}(1 / 2+)$	$\Lambda(\sim 2400)$		~ 0 (noisy)		
$\Sigma^{+}(1 / 2+)$	$\Sigma(1119)$	+ 2.45	$\sim+2.9$		
$\Sigma^{+*}(1 / 2-)$			-		
$\Sigma^{0}(1 / 2+)$		$+0.65$	$\sim+0.8$		
$\Sigma^{0 *}(1 / 2-)$			~-0.5		
$\Sigma^{-}(1 / 2+)$		- 1.16	~-1.5		
$\Sigma^{-*}(1 / 2-)$			negative		

Effective mass plots for $\Delta(3 / 2+)$ and $\Delta^{*}(3 / 2-)$

$m_{\pi}=782 . \mathrm{MeV}$

$m_{\pi}=1010 . \mathrm{MeV}$

Ratio of correlation functions for $\Delta^{++}(3 / 2+)$ and $\Delta^{++*}(3 / 2-)$

Ratio of correlation functions for $\Delta^{+}(3 / 2+)$ and $\Delta^{+*}(3 / 2-)$

Ratio of correlation functions for $\Delta^{0}(3 / 2+)$ and $\Delta^{0 *}(3 / 2-)$

Ratio of correlation functions for $\Delta-(3 / 2+)$ and $\Delta^{*}(3 / 2-)$

Delta Baryons

State (spin- parity)	Mass (MeV)	$\boldsymbol{\mu}(\mathbf{E x p t})$ $\left(\boldsymbol{\mu}_{\mathbf{N}}\right)$	$\boldsymbol{\mu}$ (Lattice $\mathbf{Q C D})$
$\Delta^{++}(3 / 2+)$	$\Delta(1232)$	2.5 to 5.5	$\sim+5.0$
$\Delta^{++} *(3 / 2-)$	$\Delta(1700)$		negative
$\Delta^{+}(3 / 2+)$		$\sim+2.5$	
$\Delta^{+*}(3 / 2-)$		negative	
$\Delta^{0}(3 / 2+)$			zero
$\Delta^{0 *}(3 / 2-)$			zero
$\Delta^{-}(3 / 2+)$			~-3.0
$\Delta^{-} *(3 / 2-)$			positive

Conclusion

- The background field method is a robust probe of hadron internal structure.
- Comparison study of magnetic moments for positive- and negative-parity states offers interesting insight into underlying quark-gluon dynamics
- Good signal for positive-parity baryon states
- Non-linear behavior is observed for negative-parity counterparts.
- Better isolation of negative-parity signals
- smearing, anisotropic lattice, etc
- use of chiral quarks (overlap, DW) for small pion masses
- finite volume effects

Reserve Slides

Baryon Interpolating Fields

$$
\chi_{1}=\varepsilon_{a b c}\left(u^{a T} C \gamma_{5} d^{b}\right) u^{c} \quad \chi_{2}=\varepsilon_{a b c}\left(u^{a T} C d^{b}\right) \gamma_{5} u^{c}
$$

Negative parity (multiply by γ_{5}):
Non-relativistic limit:

Caution: Near the chiral limit, the upper and lower components become equally important.

