# Magnetic Moment of Negative-Parity Baryons from Lattice QCD

Frank X. Lee Andrei Alexandru George Washington University

- Physics motivation
- Background field method
- Some results

**Thanks:** U.S. Department of Energy, National Science Foundation, and computing resources from NERSC and USQCD



### Excitations of the Nucleon



# Octet Baryons

| State (spin-<br>parity)        | Mass (MeV)         | μ (Expt) (μ <sub>N</sub> ) |
|--------------------------------|--------------------|----------------------------|
| p (1/2 +)                      | N (938)            | 2.79                       |
| p* (1/2 -)                     | $S^{1}_{11}(1535)$ |                            |
| n (1/2 +)                      |                    | - 1.91                     |
| n* (1/2 -)                     | $S^{0}_{11}(1535)$ |                            |
| $\Lambda_{0}(1/2 +)$           | Λ(1115)            | - 0.61                     |
| <b>Λ*</b> <sub>O</sub> (1/2 -) | Λ(1670)            |                            |
| $\Lambda_{\rm S}(1/2 -)$       | Λ(1405)            |                            |
| $\Lambda_{S}^{*}(1/2 +)$       | Λ(?)               |                            |
| $\Sigma^+$ (1/2 +)             | Σ (1190)           | 2.9                        |
| $\Sigma^{+*}$ (1/2 -)          |                    |                            |
| $\Sigma^0$ (1/2 +)             |                    | 0.8                        |
| $\Sigma^{0*}$ (1/2 -)          |                    |                            |
| $\Sigma^{-}$ (1/2 +)           |                    | - 1.5                      |
| Σ-* (1/2 -)                    |                    |                            |

#### Hadron Structure via Background Fields Interaction energy of a hadron in the presence of external electromagnetic fields:

 $H = -\vec{\mu} \cdot \vec{B} - \frac{1}{2}\alpha E^2 - \frac{1}{2}\beta B^2$  $-\frac{1}{2}\gamma_{E1}\sigma\cdot\vec{E}\times\dot{\vec{E}}-\frac{1}{2}\gamma_{M1}\sigma\cdot\vec{B}\times\dot{\vec{B}}$  $+ \gamma_{E2} \sigma_i E_{ij} B_j - \gamma_{M2} \sigma_i B_{ij} E_j$  $-\frac{1}{12}\alpha_{E2}E_{ij}^{2}-\frac{1}{12}\beta_{M2}B_{ij}^{2}+\cdots$ Time and spatial derivatives :  $\dot{E} = \frac{\partial E}{\partial t}$ ,  $E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i)$ , etc Probe of internal structure of the system in increasingly finer detail.

μ, α, β:

static bulk response

others :

spatial and time resolution

Mass shifts: 
$$\delta m(B) = m(B) - m(0) = c_1 B + c_2 B^2 + c_3 B^3 + c_4 B^4 + \cdots$$

Introduction of an external electromagnetic field on the lattice

- Minimal coupling in the QCD covariant derivative in Euclidean space  $D_{\mu} \rightarrow \partial_{\mu} + gG_{\mu} + qA_{\mu}$
- Recall that SU(3) gauge field is introduced by the link variables

$$U_{\mu}(x) = \exp(iagG_{\mu})$$

• It suggests multiplying a U(1) phase factor to the links

$$U'_{\mu}(x) = \exp(iaqA_{\mu})U_{\mu}$$

• This should be done in two places where the Dirac operator appears: both in the dynamical gauge generation and quark propagator generation

## For Example

• To apply magnetic field **B** in the z-direction, one can choose the 4-vector potential

$$A_{\mu} \equiv (\phi, \vec{A}) = (0, 0, Bx, 0)$$

then the y-link is modified by a x-dependent phase factor  $U_v \rightarrow \exp(iqaBx)U_v$ 

$$\vec{B} = \nabla \times \vec{A}$$
$$\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}$$



• To apply electric field **E** in the x-direction, one can choose the 4-vector potential  $A_{\mu} = (0, Et, 0, 0)$ 

then the x-link is modified by a t-dependent phase factor

$$U_x \rightarrow \exp(iqaEt)U_x$$

$$DG_{\mu} \operatorname{det}(D + m_q) e^{-S_c} (D + m_q)^{-1}$$

 $\int DG_{\mu} \det(D + m_{q}) e^{-S_{q}}$ 

$$D_{\mu} \rightarrow \partial_{\mu} + gG_{\mu} + qA_{\mu}$$

 $|U_y \rightarrow \exp(iqaBx)U_y$ 

- Fully dynamical: For each value of external field, a new dynamical ensemble is needed that couples to u-quark (q=1/3), d- and s-quark (q=-2/3) in the sea. Valence quark propagator is then computed on the ensembles with matching values.
- Re-weighting: Perturbative expansion of action in terms of external field. Can use existing dynamical ensembles.
- U(1) quenched: no charging the sea, only coupling to the valence on:
  - Dynamical QCD ensembles
  - Quenched QCD ensembles

### What about boundary conditions?

• On a finite lattice with periodic boundary conditions, to get a constant magnetic field, B has to be quantized

$$qBa^2 = \frac{2\pi n}{N_x N_y}, \quad n = 1, 2, 3, \cdots$$

to ensure that the magnetic flux through the plaquettes in the x-y plane is constant.



 $U_v \rightarrow \exp(iqaBx)U_v$ 

- But, for  $N_x = N_y = 24$  and 1/a = 2 GeV, the quantized field values are too strong for small-field expansion. So we have to abandon the quantization condition, and work with much smaller fields.
- To minimize the boundary effects, we work with fixed b.c. in xdirection, so that quarks originating in the middle of the lattice has little chance of propagating to the edge.

### Magnetic moment in background field

• For a particle of spin s and mass m in small fields,

$$E_{\pm} = m \pm \mu B$$

where upper sign means spin-up and lower sign spindown, and *e* 

$$\mu = g \frac{e}{2m} s$$

• g factor (magnetic moment in natural magnetons) is extracted from

$$g = m \frac{(E_+ - m) - (E_- - m)}{eBs}$$

## Lattice details

- Standard Wilson gauge action
  - 24<sup>3</sup>x48 lattice,  $\beta$ =6.0 (or a  $\approx$  0.1 fm)
  - 990 configurations
- Standard Wilson fermion action
  - Set 1: Pion mass about 500, 646, 782, 894, 1010, 1434 MeV
  - Set 2: Pion mass about 338, 362, 384, 405, 444, 693 MeV
  - Boundary conditions: Dirichlet in x, y and t, periodic in z
  - Quark source location (t,x,y,z)=(0,12,12,12)
  - Polyakov loop origin  $x_0=12$
- The following 5 dimensionless numbers  $\eta \equiv qBa^2 = +0.00036$ , -0.00072, +0.00144, -0.00288, +0.00576 correspond to 4 small B fields
  - $eBa^2 = -0.00108$ , 0.00216, -0.00432, 0.00864 for both u and d (or s) quarks.
  - $Small in the sense that the mass shift is only a fraction of the proton mass: \mu B/m ~ 1 to 5% at the smallest pion mass. In physical units, B ~ 10^{13} Tesla.$



 $U_{v} \rightarrow \exp[iqaB(x-x_{0})]U_{v}$ 

### Baryon Two-point Correlation Function

$$G(t) = \sum_{\vec{x}} \langle \operatorname{vac} | T [\chi_1(x) \overline{\chi_1}(0)] \operatorname{vac} \rangle$$
  
=  $(1 + \gamma_4) [A_+ e^{-m_+(t-t_0)} + bA_- e^{-m_-(N_t+t_0-t)}]$   
+  $(1 - \gamma_4) [bA_+ e^{-m_+(N_t+t_0-t)} + A_- e^{-m_-(t-t_0)}]$ 

b = 0 fixed (Dirichlet)
b = 1 periodic
b = -1 anto-periodic

$$\chi_1 = \varepsilon_{abc} (u^{aT} C \gamma_5 d^b) u^c$$

### Effective mass plots for N(1/2+) and $N^*(1/2-)$ states







5

0

10

15

t

20

25

30

2.0

1.5





t



 Good signal for N(1/2+): fit 17-26

• Noisy signal for N(1/2-): fit 10-14

#### Masses for N(1/2+) and N\*(1/2-) states



#### Ratio of correlation functions for p(1/2+) and $p^*(1/2-)$ (slope is related to g factor)

$$R(t) = \frac{G_+(B)}{G_-(B)} / \frac{G_+(-B)}{G_-(-B)}$$
$$\propto e^{-2\Delta m t}$$

$$\Delta m = [E_+(B) - E_-(B)]$$
$$-[E_+(-B) - E_-(-B)]$$
$$= g \frac{eBs}{m}$$





#### **Opposite sign**

#### Magnetic Moments for p(1/2+) and p\*(1/2-) states



# Ratio of correlation functions for n(1/2+) and $n^*(1/2-)$ (slope is related to g factor)



+

Same sign

Lattice 2010, Sardinia, Italy, 16

40

÷

40

40

#### Magnetic moments for n(1/2+) and $n^{*}(1/2-)$ states



#### Masses for Octet $\Lambda_0(1/2+)$ and $\Lambda^*_0(1/2-)$ states



#### Magnetic Moments for Octet $\Lambda_0(1/2+)$ and $\Lambda^*_0(1/2-)$



#### Effective mass plots for $\Lambda_{\rm S}(1/2-)$ and $\Lambda^*_{\rm S}(1/2+)$





5

10

15

• Good signal for  $\Lambda_{s}(1/2-)$ : fit 12-15

• Noisy signal for  $\Lambda *_{s}(1/2+)$ : fit 8-12

20

25

30

#### Masses for singlet $\Lambda_{s}(1/2-)$ and $\Lambda_{s}^{*}(1/2+)$ states



#### Ratio of correlation functions for $\Lambda_{s}(1/2-)$ and $\Lambda_{s}^{*}(1/2+)$



 $\Lambda_{\rm S}(1/2-) \sim {
m zero}$  $\Lambda^*_{\rm S}(1/2+) \sim {
m zero}$  but noisy



#### Ratio of correlation functions for $\Sigma^{-}(1/2+)$ and $\Sigma^{-*}(1/2-)$



#### Ratio of correlation functions for $\Sigma^0(1/2+)$ and $\Sigma^{0*}(1/2-)$



Lattice 2010, Sardinia, Italy, 25

# Octet Baryons

| State<br>(spin-<br>parity) | Mass<br>(MeV)      | μ (Expt)<br>(μ <sub>N</sub> ) | μ (Lattice<br>QCD) | μ (Unitary<br>χPT) | μ (Quark<br>Model)  |
|----------------------------|--------------------|-------------------------------|--------------------|--------------------|---------------------|
| p (1/2 +)                  | N (938)            | +2.79                         | ~+2.8              |                    |                     |
| p* (1/2 -)                 | $S^{1}_{11}(1535)$ |                               | ~ - 1.0            | + 1.1              | + 1.9               |
| n (1/2 +)                  | N (938)            | - 1.91                        | ~ - 1.9            |                    |                     |
| n* (1/2 -)                 | $S^{0}_{11}(1535)$ |                               | ~ - 0.5            | - 0.25             | - 1.2               |
| $\Lambda_0(1/2 +)$         | Λ(1115)            | - 0.61                        | ~ - 0.6            |                    |                     |
| $\Lambda^{*}{}_{0}(1/2 -)$ | Λ(1670)            |                               | ~ - 0.3            | - 0.29             | + 0.28              |
| $\Lambda_{s}(1/2 -)$       | Λ(1405)            |                               | ~ 0                | 0.24 to 0.45       | +0.04               |
| $\Lambda_{S}^{*}(1/2 +)$   | Λ(~2400)           |                               | ~ 0 (noisy)        |                    |                     |
| $\Sigma^{+}$ (1/2 +)       | Σ (1119)           | + 2.45                        | ~+2.9              |                    |                     |
| $\Sigma^{+*}$ (1/2 -)      |                    |                               | -                  |                    |                     |
| $\Sigma^0$ (1/2 +)         |                    | +0.65                         | ~+0.8              |                    |                     |
| $\Sigma^{0*}$ (1/2 -)      |                    |                               | ~ - 0.5            |                    |                     |
| Σ <sup>-</sup> (1/2 +)     |                    | - 1.16                        | ~ - 1.5            |                    |                     |
| Σ-* (1/2 -)                |                    |                               | negative           |                    | Lattice 2010, Sardi |

#### Effective mass plots for $\Delta(3/2+)$ and $\Delta^*(3/2-)$



#### Ratio of correlation functions for $\Delta^{++}(3/2+)$ and $\Delta^{++}(3/2-)$



#### Ratio of correlation functions for $\Delta^+(3/2+)$ and $\Delta^{+*}(3/2-)$



#### Ratio of correlation functions for $\Delta^0(3/2+)$ and $\Delta^{0*}(3/2-)$



#### Ratio of correlation functions for $\Delta^{-}(3/2+)$ and $\Delta^{-*}(3/2-)$



# Delta Baryons

| State (spin-<br>parity) | Mass<br>(MeV) | μ (Expt)<br>(μ <sub>N</sub> ) | μ (Lattice<br>QCD) |
|-------------------------|---------------|-------------------------------|--------------------|
| $\Delta^{++}$ (3/2 +)   | Δ (1232)      | 2.5 to 5.5                    | ~ + 5.0            |
| Δ++ * (3/2 -)           | Δ (1700)      |                               | negative           |
| $\Delta^{+}$ (3/2 +)    |               |                               | ~+2.5              |
| Δ+ * (3/2 -)            |               |                               | negative           |
| $\Delta^0$ (3/2 +)      |               |                               | zero               |
| $\Delta^{0} * (3/2 -)$  |               |                               | zero               |
| $\Delta^{-}$ (3/2 +)    |               |                               | ~ - 3.0            |
| Δ- * (3/2 -)            |               |                               | positive           |

# Conclusion

- The background field method is a robust probe of hadron internal structure.
- Comparison study of magnetic moments for positive- and negative-parity states offers interesting insight into underlying quark-gluon dynamics
  - Good signal for positive-parity baryon states
  - Non-linear behavior is observed for negative-parity counterparts.

#### • Better isolation of negative-parity signals

- smearing, anisotropic lattice, etc
- use of chiral quarks (overlap, DW) for small pion masses
- finite volume effects

# Reserve Slides

# Baryon Interpolating Fields

 $I(J^{P}) = \frac{1}{2} \left(\frac{1}{2}^{+}\right): \qquad \chi_{1} = \varepsilon_{abc} \left(u^{aT} C \gamma_{5} d^{b}\right) u^{c} \qquad \chi_{2} = \varepsilon_{abc} \left(u^{aT} C d^{b}\right) \gamma_{5} u^{c}$ 

Negative parity (multiply by  $\gamma_5$ ):  $\chi_1^- = \gamma_5 \chi_1$ ,  $\chi_2^- = \gamma_5 \chi_2$ Non-relativistic limit:

 $\chi_1 \rightarrow (\text{big-big-big}) \rightarrow O(1) \text{ (couples to nucleon)}$   $\chi_2 \rightarrow (\text{big-small-small}) \rightarrow O(p^2/E^2) \text{ (couples to ?)}$   $\chi_1^- \rightarrow (\text{big-big-small}) \rightarrow O(p/E) \text{ (couples to } \frac{1}{2}^- \text{ state})$   $\chi_2^- \rightarrow (\text{big-small-big}) \rightarrow O(p/E) \text{ (couples to } \frac{1}{2}^- \text{ state})$ In the spectrum : N\*(1535)  $\frac{1}{2}^-$  and N\*(1650)  $\frac{1}{2}^-$ .

Caution: Near the chiral limit, the upper and lower components become equally important.