

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Terzo incontro di fisica con ioni pesanti alle alte energie

Quarkonium polarization in heavy-ion collisions at the LHC

Luca Micheletti - INFN Torino 25/11/2021 - Padova

Quarkonium polarization: an introduction

Polarization: observable which measures the degree to which the spin of a particle is aligned w.r.t. a chosen axis

$$W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$$

 $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (0,0,0) \implies$ No polarization $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}) = (\pm 1,0,0) \implies$ Pure longitudinal(-)/transverse(+) polarization

Figures from P.Faccioli et al. EPJ C69 (2010) 657-673

 \Rightarrow Polarization axis:

- Helicity (HX): direction of vector meson in the collision center of mass frame
 - **Collins-Soper (CS):** the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame

ONEN Quarkonium polarization: physics motivations

ONEN Quarkonium polarization: physics motivations

Padova 2021

Introduction

Luca Micheletti

INFN Quarkonium polarization: physics motivations

INFN Quarkonium polarization: physics motivations

A–A collisions

Possible differencies w.r.t. pp:

 $\begin{tabular}{ll} \hline \square modification of J/ψ prompt feed-down fractions \\ $due to $\psi(2S)$ and χ_c suppression in the QGP \end{tabular}$

> J/ψ^{Prompt} : (60%)^{Direct} + (30%)^{χ_c} + (10%)^{$\psi(2S)$}

PRL 118 (2017) 162301

contribution of (re)generation plays an important role at the LHC energies

 \succ J/ ψ from recombination unpolarized(?)

PLB 734 (2014) 314-327

Data sample and analysis procedure

GOAL of the analysis: extract J/ ψ and $\Upsilon(1S)$ polarization parameters in Pb-Pb collisions

Data sample: collected by tha ALICE experiment in 2015 and 2018

Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV} (L_{\rm int} \sim 0.75 n b^{-1})$

INFN

Signal extraction

Padova 2021

Quarkonium polarization in Pb-Pb

Luca Micheletti

6

Signal extraction

J/ψ polarization vs centrality

- □ Statistics rapidly decreases with centrality
 - → yield extracted vs $\cos\theta$ and ϕ separately
 - \Box J/ ψ studied in:
 - 0-20%, 20-40%, 40-60%
 and 60-90% centralities
 - $2 < p_{\rm T} < 6 \, {\rm GeV}/c$

J/ψ polarization vs centrality

- □ Statistics rapidly decreases with centrality
 - → yield extracted vs $\cos\theta$ and ϕ separately
 - **J**/ ψ studied in:
 - 0-20%, 20-40%, 40-60%
 and 60-90% centralities
 - $2 < p_{\rm T} < 6 \, {\rm GeV}/c$

$\Upsilon(1S)$ polarization

- \Box Limited statistics for $\Upsilon(1S)$ in Run2
 - → yield extracted vs $\cos\theta$ and ϕ separately
 - \Box $\Upsilon(1S)$ studied in:
 - Centrality: 0–90%
 - $p_{\rm T} < 15 \; {\rm GeV}/c$

Luca Micheletti

Quarkonium polarization in Pb-Pb

4 J/ ψ and Y(1S) generated **unpolarized** in the Monte-Carlo

□ Impact of non-zero polarization from data?

Iterative procedure: tuning of generated distribution according to the polarization observed in the data

J/ ψ polarization vs $p_{\rm T}$

Fit to the $(\cos\theta, \phi)$ J/ ψ angular distribution corrected for $A \times \varepsilon$ (**2D approach**) with $W(\cos\theta, \phi)$

$$W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$$

> All polarization parameters are extracted in one single fit

Polarization parameters extraction

J/ψ polarization vs centrality & $\Upsilon(1S)$ polarization

INFN

Fit to the $\cos\theta$ and ϕ distributions corrected for $A \times \varepsilon$ with the integrated expression of $W(\cos\theta, \phi)$

$$\int W(\cos\theta,\phi)d\phi \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^{2}\theta)$$
$$\int W(\cos\theta,\phi)d\cos\theta \propto \frac{2\lambda_{\phi}}{3+\lambda_{\theta}} \cdot \cos^{2}\phi$$

 $\succ \lambda_{\theta\phi}$ can be extracted defining the variable $\tilde{\phi}$

$$\begin{cases} \tilde{\phi} = \phi - 3/4 \,\pi, \cos\theta < 0\\ \tilde{\phi} = \phi - 1/4 \,\pi, \cos\theta > 0 \end{cases}$$

$$W(\tilde{\phi}) \propto 1 + \frac{\sqrt{2}\lambda_{\theta\phi}}{3+\lambda_{\theta}} \cdot \cos 2\tilde{\phi}$$

Quarkonium polarization in Pb-Pb

J/ ψ polarization vs $p_{\rm T}$

- **Indication of small transverse/longitudinal** polarization at low $p_{\rm T}$ for **HE/CS**
 - > Maximum deviation of ~ 2σ in the low $p_{\rm T}$ bin

PLB 815 (2021)

Luca Micheletti

J/ ψ polarization vs $p_{\rm T}$

- Indication of small transverse/longitudinal polarization at low $p_{\rm T}$ for HE/CS
- □ Comparison with **ALICE pp** results at $\sqrt{s} = 8$ TeV
 - compatible within the uncertainties

😂 EPJC 78 (2018) 562

J/ ψ polarization vs $p_{\rm T}$

- **\checkmark** Indication of small **transverse/longitudinal** polarization at low $p_{\rm T}$ for **HE/CS**
- □ Comparison with **ALICE pp** results at $\sqrt{s} = 8$ TeV
 - compatible within the uncertainties

Sepic 78 (2018) 562

- □ Comparison with **LHCb pp** results at $\sqrt{s} = 7$ TeV
 - > Smaller uncertainties on λ_{θ} , λ_{ϕ} , $\lambda_{\theta\phi}$
 - Significant (~ 3σ) difference in $\lambda_{\theta}^{\text{HE}}$ at low p_{T}

 $!\,LHCb$ result obtained for prompt J/ψ

Sepic 73 (2013) 11

Padova 2021

J/ ψ polarization vs $p_{\rm T}$

- Indication of small transverse/longitudinal polarization at low $p_{\rm T}$ for HE/CS
 - → Maximum deviation of ~ 2σ in the low $p_{\rm T}$ bin

J/ψ polarization vs centrality

- \checkmark Non-zero polarization (λ_{θ}) observed
 - Useful to disentangle different effects (suppression, (re)generation, ...)
 - ➢ No visible dependence of λ_{θ} , λ_{ϕ} , $\lambda_{\theta\phi}$ moving from central to peripheral collisions

J/ ψ polarization vs $p_{\rm T}$

- Indication of small transverse/longitudinal polarization at low $p_{\rm T}$ for **HE/CS**
 - \blacktriangleright Maximum deviation of $\sim 2\sigma$ in the low $p_{\rm T}$ bin

J/ψ polarization vs centrality

- \checkmark Non-zero polarization (λ_{θ}) observed
 - Useful to disentangle different effects (suppression, (re)generation, ...)
 - > No visible dependence of λ_{θ} , λ_{ϕ} , $\lambda_{\theta\phi}$ moving from central to peripheral collisions

$\Upsilon(1S)$ polarization

- $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$ compatible with zero in HE and CS
- \blacktriangleright Compatible with **LHCb pp** results at $\sqrt{s} = 7$ TeV

arxiv:1711.02404

Luca Micheletti

Outline

\checkmark J/ ψ polarization vs $p_{\rm T}$ and centrality

- $\succ \sim 2\sigma$ deviation from zero for λ_{θ} in 2 < $p_{\rm T}$ < 4 GeV/c
- $\succ \sim 3\sigma$ difference with LHCb (pp collisions) at low $p_{\rm T}$

Feed-down fractions modification w.r.t. pp collisions

- ψ(2S) unpolarized (pp)
- *χ*_c strong "relative" polarization (pp)

► Increase in λ_{θ} related to χ_{c} suppression in Pb-Pb?

Significant J/ ψ (re)generation at low- $p_{\rm T}$

- Polarization modified by J/ψ from recombination (unpolarized)?
- S EPJC 74 (2014) 5, 2872
- PRL 124, 162002 (2020)

Padova 2021

Discussion and prospects

<u>Full theoretical theoretical description of</u> <u>polarization in HICs is missing</u>

Exercise

Is it possible to constrain χ_{c1} and χ_{c2} average polarization using the existing measurements?

Pb-Pb

$$\lambda_{\theta}^{J/\psi Prompt} \sim \lambda_{\theta}^{J/\psi \leftarrow \chi_{c}} + \lambda_{\theta}^{J/\psi \leftarrow \psi(2S)} + \lambda_{\theta}^{J/\psi Direct} + \lambda_{\theta}^{J/\psi (Re)generated}$$

- J/ψ from *b* assumed negligible
- **prompt J/** ψ \Rightarrow measured
- **Regenerated** $J/\psi \Rightarrow$ unpolarized (?)

•
$$J/\psi \leftarrow \chi_c, \psi(2S) \Rightarrow$$
 suppressed

\Rightarrow Direct J/ ψ polarization

Padova 2021

Exercise

Is it possible to constrain χ_{c1} and χ_{c2} average polarization using the existing measurements?

Padova 2021

\checkmark J/ ψ polarization vs $p_{\rm T}$ and centrality

- → ~ 2σ deviation from zero for λ_{θ} in 2 < $p_{\rm T}$ < 4 GeV/c
- $\succ \sim 3\sigma$ difference with LHCb (pp collisions) at low $p_{\rm T}$

Feed-down fractions modification w.r.t. pp collisions

- ψ(2S) unpolarized (pp)
- *χ*_c strong "relative" polarization (pp)

► Increase in λ_{θ} related to χ_{c} suppression in Pb-Pb?

Significant J/ ψ (re)generation at low- $p_{\rm T}$

Polarization modified by J/ψ from recombination (unpolarized)?

Magnetic field and angular momentum in non-central HICs modify polarization?

<u>Full theoretical theoretical description of</u> <u>polarization in HICs is missing</u>

Padova 2021

Discussion and prospects

Luca Micheletti

Spin alignment (polarization) sensitive to other mechanisms beyond hadronization

Large **angular momentum** due to the medium rotation is predicted in non-central HICs

PRC 77 (2008) 024906, Beccattini et al.

- □ Spin alignment of the vector meson can be related to the **spin-orbit coupling**
- □ Sensitivity to the **vortical structure** of the QGP
- **?** Possible effect on (re)generated J/ψ

Spin alignment (polarization) sensitive to other mechanisms beyond hadronization

- Large **angular momentum** due to the medium rotation is predicted in non-central HICs
- Huge magnetic field ($|\vec{B}| \sim 10^{14}$ T) is expected to be formed and to be short-living

MPA 803 (2008), Kharzeev et al.

Summary

First measurement of **quarkonium polarization** in nuclear collisions at the LHC

- \Box J/ ψ and Y(1S) do not exhibit a strong polarization in HICs
 - \Box Significant difference for **J/** ψ w.r.t. **LHCb** at low $p_{\rm T}$
 - New measurements of J/ψ polarization w.r.t.
 the event-plane and paper is in preparation
 - Many effects needs to be considered in the theoretical desctription of quarkonium polarization

Thank you for the attention!

Central Barrel

Rapidity: |y| < 0.9Inner Tracking System **II.** Time Projection Chamber Time of Flight III. IV. **V0** detectors **Muon Spectrometer** Rapidity: 2.5 < y < 4Front absorber Tracking system II. III. Dipole magnet

Trigger system

IV.

A Large Ion Collider Experiment

ALICE is designed for the study of heavy-ion collisions

A Large Ion Collider Experiment

Padova 2021

backup

Spin alignment: observables

Angular distribution of the decay products $\frac{dN}{d\cos\theta^*} \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*$

Reference frames

- $\square \rho_{00} =$ spin density matrix element
- $\Box \rho_{00} = 1/3$ no spin alignment

$$\Box \ \lambda_{\theta} = (3\rho_{00} - 1)/(1 - \rho_{00})$$

Vector mesons polarization

Spin alignment: results

- K^{*0} and ϕ spin alignment \Im <u>PRL 125 (2020)</u>
 - $\rho_{00} < 1/3$ at low $p_{\rm T}$ in semi-central collisions
 - *K*^{*0}: 3.2σ (PP), 2.6σ (EP)
 - φ: 2.1σ (PP), 1.9σ (EP)
 - Expectations from **quark recombination** scenario at the phase boundary

😂 PLB 629 (2005), Liang, Wang

- $\checkmark~\rho_{00} < 1/3$ at low $p_{\rm T}$ & $\rho_{00} \sim 1/3$ at high $p_{\rm T}$
- ✓ Quark mass dependence
- ✓ Maximum effect in non-central collisions
- ? Surprisingly large effect if compared with Λ polarization

PRC 101, 044611 (2020)

ϕ meson spin alignment: theory

 $\oint \phi(s\bar{s})$ spin alignment described at low energy considering different contributions

New measurements of J/ψ polarization w.r.t. the event-plane and paper in preparation

Dependence of each term on the quark mass and on the temperature of the system

 $\hfill\square$ The sign of each contribution impacts on ρ_{00}

- **?** Is it possible to extend this approach for J/ψ ?
 - c_V, c_M, c_E could be adapted
 - c_{ϕ} sobstituted by another term(color fields ?)

😂 arxiv:2110.15630, Muller and Yang

Light vector mesons polarization at RHIC

