

ALICE 3 physics motivation and detector concept

Terzo Incontro di Fisica con Ioni Pesanti alle Alte Energie

November 25 - 26, 2021

Jochen Klein (CERN) for the ALICE Collaboration

- Idea for next-generation heavy-ion programme for Run 5 and 6 at the LHC developed within ALICE in the course of 2018/19
 - Discussed at the heavy-ion town meeting (CERN, October 2018)
 - Expression of Interest submitted as input to the European Strategy for Particle Physics Update (Granada, 2019)
- Further development of detector concept and physics studies within ALICE
 - ALICE 3 workshops in October 2020, June 2021, October 2021
- Letter of Intent prepared over the course of 2021
 - LHCC review started in October 2021

Context

Initiative supported by **EPPSU**

- Early sta
 - Dileptor
 - Electric
- **Chiral sy**
- Heavy fla
 - Beauty
 - Charm I
- Hadronis
 - Multi-ch
 - Quarkol ALI-PREL-320238
- |∆η|>0.9} ALICE Preliminary 0.4⊢ 0–10% Pb–Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Prompt D^0 , D^+ , D^{*+} average, |y| < 0.51.8 0.3 {SP, BAMPS el.+rad. IIIII BAMPS el. 1.6 POWLANG HTL ····· PHSD - · Catania ---- LIDO 1.4 0.2 MC@sHQ+EPOS2 TAMU 52 0 pp reference 0.8 Filled markers: measured Open markers: p -extrapolated 0.6 0.4 0.2 -0.1 es 10 p_{\perp} (GeV/ \dot{c}) nc

ALI-PREL-319549

- Structure of exotic hadrons
 - Momentum correlations (femtoscopy)
 - Production yields dissociation in final state scattering
 - Decay studies in ultra-peripheral collisions
- New nuclear states: charm nuclei
- Ultra-soft photons: experimental test of Low's theorem
- BSM searches: ALPs, dark photons

ALICE 3 November 26th, 2021 jkl

ALICE 3 physics Comparison with models

QGP temperature

Di-lepton mass distribution

Temperature from slope (Mee)

Extremely challenging → requiring precision of ALICE 3

ALICE 3 November 26th, 2021 jkl

Dielectron v₂

Precision measurement of dielectrons as function of mass and pT

Excellent precision for dilepton v₂ \rightarrow time evolution of emission

Spectral function at T = 160 MeV

- Chiral symmetry breaking generates hadron masses
- Unique window on ρ-a₁ mixing
 - Requires large precision dilepton measurement in mass range **0.8 - 1.2 GeV/c²**

ALICE 3 | November 26th, 2021 | jkl

Chiral symmetry restoration

Dilepton mass distribution

Extremely challenging → requiring precision of ALICE 3

 $\langle r^2 \rangle = 6 D_s t$

heavy quark diffusion \Rightarrow collisional broadening

- Azimuthal correlations between DD, BB pairs
 - **Direct access** to interactions with QGP, momentum diffusion, in particular at low p_T
- Complementary to heavy-flavour flow
 - Angular distributions sensitive to interaction mechanism, nature of scattering centers

Need large statistics, large purity for D (B) mesons, large n coverage

Heavy-quark propagation

 $\hat{q} = \frac{\langle q_{\perp}^2 \rangle}{}$

 \hat{q} : semi-hard scattering \Rightarrow radiative energy loss

M Nahrgang et al, PRC 90, 024907

$D^0 \overline{D}^0$ correlations

Rapidity-difference between D and D

Requires reconstruction of **D** mesons over large rapidity

ALICE 3 November 26th, 2021 jkl

Low background: high precision \rightarrow unique sensitivity to broadening of $c\bar{c}$ pairs

Hadronisation: multicharm states

- Multi-charm baryons: unique probe of hadron formation
 - Requires production of multiple charm quarks
 - Single-scattering contribution very small (unlike e.g. J/ψ)
- Statistical hadronisation model: very large enhancement in AA
 - Specific relation between yields: g_c^n for *n*-charm states
 - How is thermalisation approached microscopically?
- Systematic measurement of multiple states to test thermalisation and hadronisation
 - Dependence on flavour, hadron size, binding energy, etc

Single and double-charm baryons: Λ_c , Ξ_c , Ξ_{cc} , Ω_{cc} Multi-flavour mesons: B_c, D_s, B_{s, ...} Tightly/weakly bound states J/ ψ , $\chi_{c1}(3872)$, T_{cc}^+ Large mass light flavour particles: nuclei

Multi-charm baryons

Nature of exotic states

See Y. Kamiya et al. arXiv:2108.09644v1

- Study interaction between hadrons trough momentum correlation
- Carries information about existence
 of bound states

ALICE 3 | November 26th, 2021 | jkl

DD* momentum correlation

- Characteristic sign-change between pp and Pb-Pb in case of bound T_{cc} state
- Effect clearly visible within experiment precision

10

- Heavy-flavour hadrons ($p_T \rightarrow 0$, $|\eta| < 4$)
 - vertexing (decay chain)
 - tracking (inv. mass resolution)
 - hadron ID (background suppression)
- **Dielectrons** ($p_T \sim 0.1 3 \text{ GeV}/c$, $M_{ee} \sim 0.1 4 \text{ GeV}/c^2$)
 - vertexing (HF background suppression)
 - tracking (inv. mass resolution)
 - electron ID
- **Photons** (100 MeV/c 50 GeV/c, wide η range)
 - electromagnetic calorimetry
- **Quarkonia and Exotica** ($p_T \rightarrow 0$)
 - muon ID
- Ultrasoft photons ($p_T = 1 50 \text{ MeV/}c$)
 - dedicated forward detector
- Nuclei
 - identification of z > 1 particles

ALICE 3 November 26th, 2021 jkl

Observables

Key requirements

- Tracking over large rapidity range
- Excellent vertexing
- Excellent particle identification
- High rate

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime) → 10 µm @ p_T = 200 MeV/c
 - radius and material of first layer crucial
 - minimal radius given by required aperture: $R \approx 5 \text{ mm at top energy}$, $R \approx 15 \text{ mm at injection energy}$ → retractable vertex detector
- 3 layers within beam pipe (in secondary vacuum) at radii of 5 - 25 mm
 - wafer-sized, bent Monolithic Active Pixel Sensors
 - $\sigma_{pos} \sim 2.5 \ \mu m \rightarrow 10 \ \mu m \ pixel \ pitch$
 - 1 ‰ X₀ per layer

ALICE 3 | November 26th, 2021 | jkl

Vertexing

5x better than ALICE 2.1 (ITS3 + TPC)

- (leveraging on ITS3 activities)
- (thin walls to minimise material)
- (impedance, aperture, ...)

mechanics, cooling, radiation tolerance

- **Relative** p_T resolution \propto $B \cdot I$ (limited by multiple scattering) \rightarrow ~1 % up to $\eta = 4$
 - integrated magnetic field crucial
 - overall material budget critical
- ~11 tracking layers (barrel + disks)
 - MAPS
 - $\sigma_{pos} \sim 10 \ \mu m \rightarrow 50 \ \mu m \ pixel \ pitch$
 - $R_{out} \approx 80 \text{ cm}$ and $L \approx 4 \text{ m} (\rightarrow \text{magnetic field integral } \sim 1 \text{ Tm})$
 - timing resolution ~100 ns (\rightarrow reduce mismatch probability)
 - material ~1 % X₀ / layer \rightarrow overall $X/X_0 = ~10$ %

Tracking

η

- MAPS on modules on water-cooled carbon-fibre cold plate
- carbon-fibre space frame for mechanical support
- R&D challenges on
 - powering scheme (\rightarrow material)
 - industrialisation

ALICE 3 | November 26th, 2021 | jkl

Outer Tracker

Total silicon surface ~60 m²

Time of Flight

• Separation power $\propto \frac{L}{\sigma_{\rm tof}}$

- distance and time resolution crucial
- larger radius results in lower p_T bound
- 2 barrel + 1 forward TOF layers
 - TOF resolution $\sigma_{TOF} \approx 20 \text{ ps}$ based on silicon timing sensors
 - outer TOF at $R \approx 85$ cm
 - inner TOF at $R \approx 19$ cm
 - forward TOF at $z \approx 405$ cm

ial ound

Sensor

- Low Gain Avalanche Diodes (LGAD) → established technology
 - requires separate read-out chip
- Monolithic timing sensors \rightarrow attractive solution
 - time resolution achievable with additional gain layer
- Single Photon Avalanche Diodes (SPAD) \rightarrow interesting in combination with photon detection for RICH
- Front-end electronics and Time to Digital Converter (leading edge and time over threshold)
 - engineering challenge

TOF detector

Total silicon surface ~45 m²

Extend PID reach of outer TOF to higher pT

- ensure continuous coverage from TOF \rightarrow refractive index n = 1.03 (barrel) \rightarrow refractive index n = 1.006 (forward)
- aerogel radiator + photon detection layer

ALICE 3 November 26th, 2021 jkl

RICH

18

Technologies and R&D

- Silicon Photomultipliers (SiPM) \rightarrow established technology, commercially available
 - limited area per device
 - requires separate front-end
 - high dark count rates
- Monolithic sensors → interesting in combination with charged particle timing measurement
 - requires significant R&D
- MCP-based solutions (e.g. LAPPD) to be followed, suffer from magnetic field

Requirements

- PDE (visible light) > 40 50 %
- fill factor > 90 %
- time jitter < 100 ps
- total area O(50) m²
- operation in magnetic field (up to 2 T)
- radiation load < 10^{12} 1 MeV n_{eq} / cm²

19

- Cryostat of 7 m length, free bore radius 1.5 m, magnetic field configuration to be optimised
- Installation of ALICE 3 around nominal IP2
 - L3 magnet can remain, ALICE 3 to be installed inside

- ALICE 3 is needed to unravel the microscopic dynamics of the QGP
 - Properties of the QGP
 - Hadronisation and nature of hadronic states
 - Axion-like particles, ultra-soft photons, ...
- **Innovative detector concept** to meet the requirements for the ALICE 3 physics programme building on experience with technologies pioneered in ALICE

 - requiring R&D activities in several strategic areas

Thank you for your attention!

Conclusions

