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ONCE UPON A TIME

e TMVA - Toolkit for Multivariate Data Analysis,
arXiv:physics/0703039

e TMVA fully integrated in ROOT in 2013

o

Mainly for classification and regression tasks

O boosted decision trees, support vector machines, cellular
automata, multilayer perceptrons, ...
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production with the DO detector,
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https://arxiv.org/abs/physics/0703039
http://tmva.sourceforge.net/old_site/news_archive.html
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.75.092007&v=858da712

PARTICLE IDENTIFICATION: TAU 1D

e Hadronically decaying tau leptons vs jet of
hadrons with Boosted Decision Trees (BDT)

Tau identification
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experiment in pp collisions at vs=8 TeV, EPJC 75: 303 (2015)



https://epjc.epj.org/articles/epjc/abs/2015/07/10052_2015_Article_3500/10052_2015_Article_3500.html

RARE PROCESSES: DIRECT STAU PRODUCTION

e BDT with low and high level variables
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Search for the electroweak production of supersymmetric particles in v/s=8TeV pp
collisions with the ATLAS detector, Phys. Rev. D 93, 052002 (2016)



https://doi.org/10.1103/PhysRevD.93.052002

GOING DOWN THE DEEP ROAD - B TAGGING AT CMS

DeepCSV: DeepJet:
e fully-connected layers ® Convolutional layers learn compact feature
e Multi classification representation (automatic feature engineering)

® RNN extract information from each set of features
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https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05011

H1GGS (DOUBLE B) TAGGING

Deep Double B Identification of heavy, energetic, hadronically decaying particles  spiaced -
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using machine-learning techniques, JINST 15 PO6005 (2020) Yo s
m 7t Conv1D (60, 32) GRU .
P ML elaers, |—| oo | — H(bb) jet
fealures Fully
connected
sv o s |2, @RU :
jet
Double-b
features 25000 137 o' (13 TeV)
> = T T T T T T —
. [0} P W B
Inclusive search for S L M cmoan 3 ]
. . = L Deep double-b tagger j:\:lultijet .
Deep AK8 h|gh|y boosted nggs 2 20000: Fassing region W Tt bckgroung ]
. o [ H(bb), 1 =3.7 =
N o fodides bosons decaying to @ 1s000] _j
g r:t'fﬁl—'ﬁdﬁj}' bo.ttom quark-éqt|quark ook ]
particles, ordered by pr Fully pairs in pp collisions at : ]
connected| [Output| +/s=13 TeV, JHEP 12 085 **°© .
= r 1
g - 'k a (I layer) (2020) o ok :
éI jite! tﬂ"‘[ TP — i{ ;
= "SVs, ordered by Sikap . :%_y +‘ + 7
60 80 100 120 140 160 180 200

mg,, (GeV) 6


https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://link.springer.com/article/10.1007%2FJHEP12%282020%29085
https://link.springer.com/article/10.1007%2FJHEP12%282020%29085

DEEP LEARNING FOR SIMULATION

e Computing demands increase nonlinearly with increasing pileup
e [|HC Run 2: full detector simulation (Geant4) took “40% of grid
CPU resources for CMS & ATLAS
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2020-006/

NEW TRENDS IN RECO

e Ideal applications for graph neural networks:
o Hit clouds in Calorimeters: point cloud of

en ergy depOSItS -— Filter likely. Filter, convert to
. — adjacent triplets
o Trackin g Raw hitdata & doublets
embedded & - | .
——

O J et ta g g N g Train/classify Train/classify \ \

doublets in GNN  triplets in GNN

e End-to-end reconstruction of multiple Appl cutfor DBSCAN for
seeds track labels
particles simultaneously - 1 B e
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Gluon-jet image - 3 channels: track py, ECAL & HCAL



THE FUTURE

Run Anomaly detection in the trigger
o Variational autoencoders for new physics mining at the Large Hadron
Collider, J. High Energ. Phys. 2019, 36 (2019)

Improve unfolding with invertible networks: detector < high level
variables

o Invertible networks or partons to detector and back again, SciPost Phys. 9,
074 (2020)

Use attention to mitigate combinatorics in ttbar events: Network
output should be invariant under permutations of the input jet

order
o SPANet: Generalized Permutationless Set Assignment for Particle Physics
using Symmetry Preserving Attention, arXiv:2106.03898 (2021) 1o



https://link.springer.com/article/10.1007/JHEP05(2019)036
https://scipost.org/SciPostPhys.9.5.074
https://scipost.org/SciPostPhys.9.5.074
https://arxiv.org/abs/2106.03898

DEEP LEARNING ON FPGAS: HISYMI

e Tool to deploy NNs to FPGA
o reads as input models trained on standard
DL libraries
o implements common ingredients (layers,

Electron identification efficiency

activation functions, etc)
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https://arxiv.org/abs/2008.03601

OPENFORBC

e Open For Better Computing
o Project funded by 2021 INFN
Research4lnnovation (R4l) call
o Promote use of GPUs for scientific
applications

GFLOP/sec

e Effortless GPU partitioning for hardware «}-

from different vendors in Linux KVM

Hardware choice:
Nvidia V100 32GB GPU

Theoretical Peak Performance, Single Precision

INFN

Istituto Nazionale di Fisica Nucleare
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¥ + ¥ ! : NVIDIA GeForce GPUs —Jill—
ML training: AMD Radeon GPUs —@)—

: INTEL Xeon Phis ——

huge GPU with lots of memory
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ML inference:
smaller GPUs for higher throughput

12



DETECTOR DEVELOPMENT: k3D

o RSDS (ReSiStive AC-COUpled ;(;)).a:)tial resolution for sensors with different geometries as a function of the intt?rpad
Silicon Detectors): silicon sensors s/ § ... + .
based on LGAD (LOW_Gain 5% 4 Linear Attenuation |
Avalanche Diode) . 1:

o Signal is seen over several pixels

-0

e Multi-Output regression (MR) o) 4 i
and Multi-layer Perceptron (MLP) 23| 4 ” ’
models using various amplitudes W o o %0 B0 0
as input to predict hit position A

First application of machine learning algorithms to the position reconstruction
in Resistive Silicon Detectors, JINST 16 PO3019 (2021) 13



https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.1088%2F1748-0221%2F16%2F03%2FP03019

SMART INFRASTRUCTURE

e Inspired from S.M.A.R.T. (Self-Monitoring, Analysis and Reporting
Technology) for hard drives

e Predictive vs reactive maintenance for complex infrastructure

e (Can be detectors, computing centers, factories, IOT

machine

Analytics Operations

Data sources

Sensors
(() ‘\ ...........
.. \gf Rl 2
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OPERATIONAL INTELLIGENCE

e Targets reduction of operational costs of distributed computing
infrastructure through smart automation
o Use case: Worldwide LHC Computing Grid (WLCG)

o Metrics: reduction of number of tickets, number of operators, time
to solve, user satisfaction

e Exploits anomaly detection in time series, natural language
processing (NLP) and clusterization techniques

e Bonus: Increase resource utilisation efficiency => increase
uptime, less resources wasted => “Green” development

Operational Intelligence for Distributed Computing Systems

https://operational-intelligence.web.cern.ch/ for Exascale Science, EPJ Web Conf.. 245 (2020) 03017
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https://operational-intelligence.web.cern.ch/
https://doi.org/10.1051/epjconf/202024503017

ANOMALY DETECTION IN THE CERN CLOUD

e Aims to identify problematic nodes in the CERN cloud

e Metrics are encoded as images or vectors according to model
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https://doi.org/10.1051/epjconf/202125102011

SUMMARY

e HEP is using MVA methods (aka ML) since > 20 years

e DL entered the scene with jet tagging
o Now successfully used in analysis (S/B, jet to parton assignment,...)
o Anomaly detection, attention, GANSs, ... for Run 3 and beyond

e Atthe LHC we are resource-limited at L1, HLT and offline

o DL may be a way to save resources and extend physics reach
m Sparse data: traditional NN (CNN, RNN) may work but at a cost
m Custom edge computing: inference needs to run everywhere (FPGA,
custom chips, grid)
m Real time: inference within 1 us (trigger boundary)

e Many more applications: detector, computing, ...

17



QUTLOOK

e Physics applications of ML and DL in a A PROPOSAL FOR THE
wide range of domainS, and growing DARTMOUTH SUMMER RESEARCH PROJECT
® Many Challenges ahead: ON ARTIFICIAL INTELLIGENCE

o Keep the pace with Al research
m  Nowadays mainly driven by industry,

science should not stand behind! T enrwart Univesmity
N. Rochester, I.B. M. Corporation )
O FOSter the USG Of CommOI”I | - C.E. Shannon, Bell Telephéne Laboratories

tools/technologies
o Exploit heterogeneous hardware
o Deploy to production

August 31, 1955
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Output

e [eed-forward Neural Network :
(FFNN)
e Recurrent Neural Network (RNN)
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e Long shortterm memory(LSTM)
e Gated Recurrent Unit (GRU) >



Convolutional Neural Networks (CNN) @

Istituto Nazionale di Fisica Nucleare

e Convolutional layer: two functions produce a third that
describes how the shape of one is changed by the other

e pooling layer: reduce dimensionality

Source layer
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TRANSFORMERS (201])

e All you need is attention

e Sclf-attention: query, key, value:

o the output is a weighted sum of the
values, where the weight assigned
to each value is determined by the
dot-product of the query with all the
keys:

QKT

Vdy

Attention(Q, K, V) = softmax( W

arXiv:1706.03762 [cs.CL]
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ATTENTION
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Istituto Nazionale di Fisica Nucleare

GENERATIVE ADVERSARIAL NETWORK - GAN (2014)

e Double network: generator net and discriminator net
0 generator produces samples close to training samples
o discriminator differentiates samples from generator and training set
o training until discriminator can no longer distinguish

Wasserstein distance: measures
the distance between the data [/

Training set

distribution observed in the L < Ciseriminator

training dataset and the ‘ Rea
distribution observed in the ﬁangom R {Fa ke

generated examples.

vy

Fake image

arXiv:2101.06250v1 [quant-ph] Generator .



GRAPH NEURAL NETWORK (GNN
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GNN FOR TRACKING

e Graphs can capture the sparsity, manifold, relational structures

of physics data Doublets:
Filter likel nodes
- ilter likely, Filter, convert to : .
— . adjacent nists Triplets: edge
Raw hitdata L. doublets @ @
embedded & - | *

Apply cut for DBSCAN for
seeds track labels

ExaTrkx https://exatrkx.github.io/ 26



ARTIFICIAL GENERAL INTELLIGENCE

e Common sense:
o Current systems may be easily fooled by just slight changes in the
input data (for example image taken from another viewpoint)
o Embed coordinate systems, whole-part relationship (capsules)
e Abstract concepts:
o Current models may be able to distinguish between a jet and a tau,

but do not know what a particle is
e Creativity:
o Current models highly specialised and engineered to solve
specific problems

[Murray Shanahan, Geoff Hinton] -



SELF SUPERVISED LEARNING

e Supervised learning needs many labeled data

e Reinforced learning:
o Not practical to train in real world (when no simulation is available)
o takes longer than an average human for a machine to learn a new

task

e Self supervised learning: Predict everything from everything
else - learn representations, rather than learning specific tasks
o Very large networks trained with large amount of data
o Fill_ing the bl_anks - Word2Vec, Transformer architecture for NLP
o Not (yet) so successful for continuous problems (image, video)

[Yann LeCun] )8



CONSCIOUSNESS PRIOR

e Current deep learning:
o System 1: fast, unconscious task solving

e [uture deep learning:
o System 2: slow, conscious task solving like reasoning, planning

e How?
o Learn by predicting in abstract space
o Learn representations (low dimensional vector), derived using
attention from a high dimensional vector
o The prior: the factor graph (joint distribution between a set of
variables) is sparse 8 Hj £i(S:)

Yoshua Bengio, arXiv:1709.08568 [cs.LG] VA -




INFORMATION BOTTLENECK

e Hidden layers represent a Markov chain

of topologically distinct representations

o Information about the inputs decreases
along the hidden layers

o (X, h_1)>..>I1(X, h_i) > I(X, h_i+1)

e In the first epochs, the network is trained
to fully represent the input data; then, it
learns to forget the irrelevant details by
compressing the representation of the

input

arXiv:1503.02406 [cs.LG]
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INFORMATION ABOUT OUTPUT LABEL MOST

LEAST

A

LEAST INFORMATION ABOUT INPUT DATA MOST

A INITIAL STATE: Neurons in Layer 1 encode everything about the input
data, including all information about its label. Neurons in the highest
layers are in a nearly random state bearing little to no relationship

to the data or its label.

B FITTING PHASE: As deep learning begins, neurons in higher layers

gain information about the input and get better at fitting labels to it.

C PHASE CHANGE: The layers suddenly shift gears and start to “forget”

information about the input.

D COMPRESSION PHASE: Higher layers compress their representation
of the input data, keeping what is most relevant to the output label.

They get better at predicting the label.

E FINAL STATE: The last layer achieves an optimal balance of accuracy

and compression, retaining only what is needed to predict the label.
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