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Once upon a time
● TMVA - Toolkit for Multivariate Data Analysis, 

arXiv:physics/0703039
● TMVA fully integrated in ROOT in 2013
● Mainly for classification and regression tasks

○ boosted decision trees, support vector machines, cellular 
automata, multilayer perceptrons, ...
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Multivariate searches for single top quark 
production with the DØ detector, 
Phys.Rev.D75:092007 (2007)

https://arxiv.org/abs/physics/0703039
http://tmva.sourceforge.net/old_site/news_archive.html
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.75.092007&v=858da712


Particle Identification: Tau ID
● Hadronically decaying tau leptons vs jet of 

hadrons with Boosted Decision Trees (BDT) 

Identification and energy calibration of hadronically decaying tau leptons with the ATLAS 
experiment in pp collisions at √𝑠=8 TeV, EPJC 75: 303 (2015) 3

Tau jet

https://epjc.epj.org/articles/epjc/abs/2015/07/10052_2015_Article_3500/10052_2015_Article_3500.html
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Rare Processes: Direct Stau Production
● BDT with low and high level variables

Search for the electroweak production of supersymmetric particles in √s=8  TeV pp 
collisions with the ATLAS detector, Phys. Rev. D 93, 052002 (2016)

Stau mass 
109 GeV

https://doi.org/10.1103/PhysRevD.93.052002


Going down the deep road - B tagging at CMS
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DeepCSV:
● fully-connected layers 
● Multi classification

DeepJet:
● Convolutional layers learn compact feature 

representation (automatic feature engineering)
● RNN extract information from each set of features

Identification of heavy-flavour jets with the 
CMS detector in pp collisions at 13 TeV, 
JINST 13 P05011 (2018)

https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05011


Higgs (Double B) Tagging
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Deep Double B

Deep AK8

Identification of heavy, energetic, hadronically decaying particles 
using machine-learning techniques, JINST 15 P06005 (2020) 

Inclusive search for 
highly boosted Higgs 
bosons decaying to 
bottom quark-antiquark 
pairs in pp collisions at 
√𝑠= 13 TeV, JHEP 12  085 
(2020)

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://link.springer.com/article/10.1007%2FJHEP12%282020%29085
https://link.springer.com/article/10.1007%2FJHEP12%282020%29085


Deep Learning for simulation
● Computing demands increase nonlinearly with increasing pileup
● LHC Run 2: full detector simulation (Geant4) took ~40% of grid 

CPU resources for CMS & ATLAS
● Calorimeter simulation most CPU intensive
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ATLAS FastCaloGan
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Fast simulation of the ATLAS calorimeter 
system with Generative Adversarial Networks, 
ATL-SOFT-PUB-2020-006 (2020)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2020-006/


New Trends in Reco
● Ideal applications for graph neural networks:

○ Hit clouds in Calorimeters: point cloud of 
energy deposits

○ Tracking 
○ Jet tagging

● End-to-end reconstruction of multiple 
particles simultaneously
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The future
● Run Anomaly detection in the trigger

○ Variational autoencoders for new physics mining at the Large Hadron 
Collider, J. High Energ. Phys. 2019, 36 (2019)

● Improve unfolding with invertible networks: detector ⇔ high level 
variables
○ Invertible networks or partons to detector and back again, SciPost Phys. 9, 

074 (2020)

● Use attention to mitigate combinatorics in ttbar events: Network 
output should be invariant under permutations of the input jet 
order
○ SPANet: Generalized Permutationless Set Assignment for Particle Physics 

using Symmetry Preserving Attention, arXiv:2106.03898 (2021) 10

https://link.springer.com/article/10.1007/JHEP05(2019)036
https://scipost.org/SciPostPhys.9.5.074
https://scipost.org/SciPostPhys.9.5.074
https://arxiv.org/abs/2106.03898


Deep Learning on FPGAs: HLS4ML
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Distance-Weighted Graph Neural Networks on FPGAs for Real-Time 
Particle Reconstruction in High Energy Physics, arXiv:2008.03601

● Tool to deploy NNs to FPGA
○ reads as input models trained on standard 

DL libraries
○ implements common ingredients (layers, 

activation functions, etc)

● Uses HLS softwares to provide a firmware 
implementation of a given network
○ Pruning
○ Quantization

https://arxiv.org/abs/2008.03601


OpenForBC
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● Open For Better Computing
○ Project funded by 2021 INFN 

Research4Innovation (R4I) call
○ Promote use of GPUs for scientific 

applications 
● Effortless GPU partitioning for hardware 

from different vendors in Linux KVM



Detector Development: RSD
● RSDs (Resistive AC-Coupled 

Silicon Detectors): silicon sensors 
based on LGAD (Low-Gain 
Avalanche Diode) 
○ Signal is seen over several pixels 

● Multi-Output regression (MR) 
and Multi-layer Perceptron (MLP) 
models using various amplitudes 
as input to predict hit position
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First application of machine learning algorithms to the position reconstruction 
in Resistive Silicon Detectors,  JINST 16 P03019 (2021)

https://www.researchgate.net/deref/https%3A%2F%2Fdoi.org%2F10.1088%2F1748-0221%2F16%2F03%2FP03019


Smart Infrastructure
● Inspired from S.M.A.R.T. (Self-Monitoring, Analysis and Reporting 

Technology) for hard drives
● Predictive vs reactive maintenance for complex infrastructure
● Can be detectors, computing centers, factories, IOT

14

Sensors Data sources Analytics

human
machine

Operations



Operational Intelligence
● Targets reduction of operational costs of distributed computing 

infrastructure through smart automation
○ Use case: Worldwide LHC Computing Grid (WLCG)
○ Metrics: reduction of number of tickets, number of operators, time 

to solve, user satisfaction

● Exploits anomaly detection in time series, natural language 
processing (NLP) and clusterization techniques

● Bonus: Increase resource utilisation efficiency =>  increase 
uptime, less resources wasted => “Green” development
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https://operational-intelligence.web.cern.ch/

Operational Intelligence for Distributed Computing Systems 
for Exascale Science, EPJ Web Conf., 245 (2020) 03017

https://operational-intelligence.web.cern.ch/
https://doi.org/10.1051/epjconf/202024503017


Anomaly Detection in the CERN Cloud
● Aims to identify problematic nodes in the CERN cloud
● Metrics are encoded as images or vectors according to model

16Anomaly detection in the CERN cloud infrastructure, EPJ Web Conf 251, 02011 (2021)

https://doi.org/10.1051/epjconf/202125102011


Summary
● HEP is using MVA methods (aka ML) since > 20 years
● DL entered the scene with jet tagging

○ Now successfully used in analysis (S/B, jet to parton assignment,...)
○ Anomaly detection, attention, GANs, … for Run 3 and beyond

● At the LHC we are resource-limited at L1, HLT and offline
○ DL may be a way to save resources and extend physics reach

■ Sparse data: traditional NN (CNN, RNN) may work but at a cost
■ Custom edge computing: inference needs to run everywhere (FPGA, 

custom chips, grid)
■ Real time: inference within 1 μs (trigger boundary)

● Many more applications: detector, computing, ...
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Outlook
● Physics applications of ML and DL in a 

wide range of domains, and growing 
● Many challenges ahead:

○ Keep the pace with AI research
■ Nowadays mainly driven by industry, 

science should not stand behind!

○ Foster the use of common 
tools/technologies

○ Exploit heterogeneous hardware
○ Deploy to production
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BACKUP
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● Feed-forward Neural Network 
(FFNN)

● Recurrent Neural Network (RNN)

● Long short term memory(LSTM)
● Gated Recurrent Unit (GRU)

20



21

Convolutional Neural Networks (CNN)

● Convolutional layer: two functions produce a third that 
describes how the shape of one is changed by the other

● pooling layer: reduce dimensionality



Transformers (2017)
● All you need is attention
● Self-attention: query, key, value:

○ the output is a weighted sum of the 
values, where the weight assigned 
to each value is determined by the 
dot-product of the query with all the 
keys:

arXiv:1706.03762 [cs.CL] 22



Attention
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Gating of the V
SoftMax attention



Generative Adversarial Network - GAN (2014)
● Double network: generator net and discriminator net

○ generator produces samples close to training samples
○ discriminator differentiates samples from generator and training set
○ training until discriminator can no longer distinguish

24arXiv:2101.06250v1 [quant-ph]

Wasserstein distance: measures 
the distance between the data 
distribution observed in the 
training dataset and the 
distribution observed in the 
generated examples.



Graph Neural Network (GNN)
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● Node prediction
● Edge prediction
● Graph prediction



GNN for Tracking
● Graphs can capture the sparsity, manifold, relational structures 

of physics data

26ExaTrkx https://exatrkx.github.io/

Doublets: 
nodes

Triplets: edges
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Artificial General Intelligence
● Common sense:

○ Current systems may be easily fooled by just slight changes in the 
input data (for example image taken from another viewpoint)

○ Embed coordinate systems, whole-part relationship (capsules)

● Abstract concepts:
○ Current models may be able to distinguish between a jet and a tau, 

but do not know what a particle is

● Creativity:
○ Current models highly specialised and engineered to solve 

specific problems

[Murray Shanahan, Geoff Hinton]



Self Supervised Learning
● Supervised learning needs many labeled data
● Reinforced learning: 

○ Not practical to train in real world (when no simulation is available)
○ takes longer than an average human for a machine to learn a new 

task

● Self supervised learning: Predict everything from everything 
else - learn representations, rather than learning specific tasks
○ Very large networks trained with large amount of data 
○ Fill_ing the bl_anks - Word2Vec, Transformer architecture for NLP
○ Not (yet) so successful for continuous problems (image, video)

28[Yann LeCun]



Consciousness Prior
● Current deep learning: 

○ System 1: fast, unconscious task solving

● Future deep learning: 
○ System 2: slow, conscious task solving like reasoning, planning

● How?
○ Learn by predicting in abstract space
○ Learn representations (low dimensional vector), derived using 

attention from a high dimensional vector
○ The prior: the factor graph ( joint distribution between a set of 

variables) is sparse

29Yoshua Bengio, arXiv:1709.08568 [cs.LG]



Information Bottleneck
● Hidden layers represent a Markov chain 

of topologically distinct representations
○ Information about the inputs decreases 

along the hidden layers
○ I(X, h_1) > …> I(X, h_i) > I(X, h_i+1)  

● In the first epochs, the network is trained 
to fully represent the input data; then, it 
learns to forget the irrelevant details by 
compressing the representation of the 
input

30 arXiv:1503.02406 [cs.LG]


