

Experimental results on heavy flavour baryons in pp and Pb-Pb

Mattia Faggin – University and INFN, Padova (Italy)

Terzo incontro sulla fisica con ioni pesanti alle alte energie

26th November 2021 – Padova (Italy)

Heavy quarks: a unique probe

- Mass of the order of ~ GeV/c^2
 - → charm and beauty quarks mainly produced in hardscattering processes among partons
- Pb-Pb collisions: produced before the QGP formation $\tau_{\text{QGP}} \sim 1 \text{ fm}/c$ (production timescale: $\Delta \tau \sim 1/Q \sim 1/2m$)
- <u>Full evolution of the system experienced</u>

Measurement of charm and beauty hadrons: access to charm and beauty quarks dynamics

pp collisions

- Tests of pQCD calculations
- Reference for heavy-ion collisions

Pb-Pb collisions

- Hot nuclear matter effects
 - \rightarrow Energy loss in the QGP
 - \rightarrow Collective motion of the system
 - \rightarrow Modification of hadronization mechanisms

- $m_{\rm c} \simeq 1.3 \; {\rm GeV}/c^2$
- $\Delta \tau_{\rm c} \simeq 0.08 \, {\rm fm}/c$

- BEAUTY
- $m_{\rm b} \simeq 4.2 \ {\rm GeV}/c^2$
- $\Delta \tau_{\rm b} \simeq 0.03 \ {\rm fm}/c$

Charm and beauty hadron formation in e⁺e⁻ and Pb-Pb collisions

- "Point-like" object interaction
- Fragmentation

Increasing "point-like" object interactions

- QGP: complex large-size system
- Parton degrees of freedom
- Modification of hadronization mechanisms

More on F. Bellini' talk "<u>Experimental</u> <u>overview: hadronization and</u> <u>coalescence in light and heavy flavour</u> <u>sector</u>"

Charm and beauty hadron formation in pp collisions

Standard description of heavy-quark hadronization based on the factorization theorem

➢ Fragmentation functions assumed universal and constrained from e⁺e[−] and e[−]p measurements

Heavy flavour (HF) production in pp collisions $\sqrt{s} = 5.02 \text{ TeV}$

pp, **√***s* = 5.02 TeV

± 1.9% BR uncertainty not shown

 p_{\perp} (GeV/c)

- Fragmentation functions constrained from e⁺e⁻ measurements
- Theoretical models based on a factorisation approach describe the meson production within large uncertainties
- D-meson cross section on the upper edge of FONLL prediction
- D-meson ratios independent among collision systems and vs. $p_{\rm T}$

- Fragmentation functions constrained from e⁺e⁻ measurements
- Theoretical models based on a factorisation approach describe the meson production within large uncertainties
- D-meson cross section on the upper edge of FONLL prediction
- D-meson ratios independent among collision systems and vs. $p_{\rm T}$

- Beauty baryon-to-meson:
 - \blacktriangleright Decreasing trend vs. $p_{\rm T}$
 - > Enhancement at low p_T with respect to $B_s^+/(\overline{B}^0 + B^-)$

26th November 2021

 $\rightarrow \times$ 2.5 - 5 enhancement in pp collisions compared to e^+e^-

→ Further mechanisms playing a role? → Non-universality of fragmentation functions?

Charm fragmentation fractions in pp collisions

 $\sqrt{s} = 5.02 \text{ TeV}$

Baryon enhancement – models

J.P. Christiansen, P. Z. Skands: <u>JHEP 1508 (2015) 003</u>

<u>PYTHIA 8 with improved Colour Reconnection (CR)</u>
 → "junction" topology enhances charm baryon production

V. Minissale, S. Plumari, V. Greco: arXiv:2012.12001

- 2. <u>Catania model</u>
 - Thermalised system of u,d,s and gluons assumed
 - Mixed hadron formation
 - a. fragmentation
 - **b.** coalescence
 - \rightarrow imposed to be the only mechanism for $p \rightarrow 0$

 $\sqrt{s} = 5.02 \text{ TeV}$

Baryon enhancement – models

M. He, R. Rapp: <u>PLB 795 (2019) 117-121</u>

 $\sqrt{s} = 5.02 \text{ TeV}$

- 3. <u>Statistical Hadronization Model and Relativistic Quark</u> <u>Model (SHM + RQM)</u>
 - Hadronization ruled by thermo-statistical weights governed by hadron masses $(n_i \sim m_i^2 T_H K_2 (m_i/T_H))$ at a universal hadronization temperature T_H
 - Strong feed-down from an augmented set of excited charm baryons
 - \rightarrow PDG: 5 Λ_c , 3 Σ_c , 8 Ξ_c , 2 Ω_c
 - \rightarrow RQM: additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c

Can further baryon measurements help understanding the mechanisms underlying the baryon enhancement?

$n_i[\cdot 10^{-4} \text{ fm}^{-3}](T_{\text{H}} \text{ [MeV]})$	D ⁰	D ⁺	D *+	D_s^+	Λ_{c}^{+}	$\Xi_{c}^{0,+}$	Ω_{c}^{0}
PDG (170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
RQM (170)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144

- Larger than e^+e^- results (\leftrightarrow Monash) \rightarrow larger relative enhancement than Λ_c/D^0
- $\Sigma_c^{0,+,++}/D^0$ partially accounts for larger Λ_c^+/D^0
- Well **described** by **SHM + RQM** and **QCM** (c coalescence with equal-velocity light quarks, thermal weights for abundances) predictions

- Measurement of Λ_c feed-down from Σ_c
- $\Lambda_c^+ \leftarrow \Sigma_c/\Lambda_c^+ = 0.38 \pm 0.06(\text{stat.}) \pm 0.06(\text{syst.})$
- Overestimated by CR modes
 → some parameter to be tuned to describe the
 - direct Λ_c production?

26th November 2021

Mattia Faggin - University and INFN, Padova (Italy)

- \rightarrow baryons are 'strange'
- Catania (fragm. + coal.) works better

 $\mathsf{BR}(\Omega^0_c {\rightarrow} \Omega^- \pi^+) {\times} \sigma(\Omega^0_c) / \sigma(\mathsf{D}^0_c)$

٠

 $\Omega_{\rm c}^0$

D

 Ω_c^0 : sizeable contribution to charm production at LHC energies?

 $\sqrt{s} = 13 \text{ TeV}$

Charm production vs. multiplicity

- pp, p-Pb, Pb-Pb colliding systems compared through common multiplicity estimators
- Λ_c^+/D^0 ratio smoothly **increasing** at intermediate p_T from pp to Pb-Pb
- Same underlying processes ruling the HF production in different colliding systems?

More on C. Terrevoli's talk: "Experimental results on open heavy flavour vs. multiplicity"

26th November 2021

$\Lambda_{\rm c}^+/{\rm D}^0$ ratio in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

- Hint of higher Λ_c^+/D^0 ratio at intermediate p_T in Pb-Pb collisions than in pp
- Radial-flow push in Pb-Pb?
- Modification of hadronization?

$\Lambda_{\rm c}^+/{\rm D}^0$ ratio in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

- Hint of higher Λ_c^+/D^0 ratio at intermediate p_T in Pb-Pb collisions than in pp
- Radial-flow push in Pb-Pb?
- Modification of hadronization?

- Measurement described by:
 - 1. statistical hadronization models
 - 2. models implementing the heavy-quark hadronization via fragmentation + coalescence
- A pure coalescence picture fails

26th November 2021

Mattia Faggin - University and INFN, Padova (Italy)

Summary

- Standard picture for the **heavy flavour production** in pp collisions based on the factorization approach, assuming **universal fragmentation functions**
- Recent results from LHC show that this assumption is no more valid in hadronic collisions at LHC

Hidden relationship among collision systems?

LHCb: <u>CHIN. PHYS. C44 (2020) 022001</u> LHCb: <u>PRL 124, 082002 (2020)</u> CMS: <u>arXiv:2001.06533 [hep-ex]</u>

More on C. Terrevoli's talk: "<u>Experimental results on open heavy</u> <u>flavour vs. multiplicity</u>"

New mechanisms in place?

• Further inputs on hadron structure from <u>multi-HF production</u> and <u>spectroscopy</u> measurements

• Joint effort between theory and experiments to investigate the baryon enhancement is necessary!

Thank you very much for your attention!

Backup

• Σ_c -state production suppressed by ~3-4 times that of excited Λ_c^+ states in e⁺e⁻ collisions at $\sqrt{s} = 10.52$ GeV

$c\bar{c}$ cross section in pp collisions

FONLL: <u>JHEP 1210 (2012) 137</u> NNLO: <u>PRL 118 (2017) 122001</u>, <u>JHEP 03 (2021) 029</u> PHENIX: <u>Phys. Rev. C 84 (2011) 044905</u> STAR: <u>Phys. Rev. D 86 (2012) 072013</u> • $c\bar{c}$ production cross section at midrapidity in pp collisions at $\sqrt{s} = 5.02$ TeV measured as <u>sum</u> of ground state hadron cross sections

 $(d\sigma^{c\bar{c}}/dy)_{|y|<0.5} = 1165 \pm 44(\text{stat.})^{+134}_{-101}(\text{syst.}) \,\mu\text{b}$

- Results previously published at $\sqrt{s} = 2.76$ and 7 TeV from D mesons updated with fragmentation fractions from $\sqrt{s} = 5.02$ TeV analysis \rightarrow 40% increase
- Higher values driven by the observed baryon enhancement in pp collisions
- Results on **upper edge of FONLL and NNLO** calculations

 $\sqrt{s} = 5.02 \text{ TeV}$