# Theoretical overview: Hadronization and coalescence

### S. Plumari

Dipartimento di Fisica e Astronomia 'E. Majorana', Università degli Studi di Catania

**INFN-LNS** 





Many thanks to V. Minissale, S. K. Das, Y. Sun, M.L. Sambataro, V. Greco

# Ultra-relativistic heavy ion collisions

#### Hadronization of the QGP:

Transition from a deconfined medium composed of quarks, antiquarks and gluons to hadronic matter (color-neutral)



#### No first-principle description of hadron formation: Non-perturbative problem

## **Hadronization schemes**



# **Indipendent fragmentation**

Inclusive hadron production from hard-scattering processes (large Q<sup>2</sup>):

Factorization of: PDFs, partonic cross section (pQCD), fragmentation function

 $\frac{dN_h}{d^2p_h} = \sum_f \int dz \frac{dN_f}{d^2p_f} D_{f \to h}(z) \qquad \begin{array}{l} \mathbf{q} \neq \mathbf{\pi}, \, \mathbf{K}, \, \mathbf{p}, \, \mathbf{\Lambda} \, .. \\ \mathbf{c} \neq \mathbf{D}, \, \mathbf{D}_{\mathrm{s}}, \, \mathbf{\Lambda}_{\mathrm{c}}, \, ... \end{array}$ 

#### **Fragmentation function**

**Fragmentation functions**  $D_{f \rightarrow h}$  are phenomenological functions to parameterize the *non-perturbative parton-to-hadron transition* z = fraction of the parton momentum taken by the hadron h**Fragmentation functions**assumed**universal**among energyand collision systems and constrained from e<sup>+</sup>e<sup>-</sup>and ep

# **Cluster Fragmentation (HERWIG)**

#### Initially developed for e<sup>+</sup>e<sup>-</sup> collisions (B.R. Webber, NPB 238 (1984), 492)

- Parton shower of both the initial partons involved in the collision and the particle produced in the collision are evolved perturbative down to a softer scale Q<sub>0</sub>
- Multiple scattering
- Non-perturbative gluon splitting in into qq pairs
- Identify colour-singlet clusters of partons
- Final Clusters decay into hadrons



### Hadronization: fragmentation and coalescence

#### Proton to pion ratio Enhancement:

In vacuum from fragmentation functions the ratio is small  $\frac{D_{q \to p}(z)}{D_{q \to \pi}(z)} < 0.25$ 

#### **Elliptic flow splitting:**

For  $p_T>2$  GeV Both hydro and fragmentation predicts similar  $v_2$  for pions and protons

#### Another hadronization mechanism is by coalescence:

Formalism originally developed for light-nuclei production from coalescence of nucleons on a freezeout hypersurface.

Extended to describe meson and baryon formation in AA collisions from the quarks of QGP through  $2\rightarrow 1$  and  $3\rightarrow 1$  processes

V. Greco, C.M. Ko, P. Levai PRL 90, 202302 (2003).
V. Greco, C.M. Ko, P. Levai PRC 68, 034904 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRL 90, 202303 (2003).
R.J. Fries, B. Muller, C. Nonaka, S.A. Bass PRC 68,044902 (2003).



# Hadronization in medium: Coalescence

# Phase space at the hadronization is filled with partons

- No partons in the vacuum but a thermal ensemble of partons
- No need to create qq pairs via splitting or string breaking
- Partons that are "close" to each other in phase space (position and momentum) can simply recombine into hadrons

#### **Coalescence**

- partons are already there to be close in phase space
- p<sub>h</sub>= n p<sub>T,</sub>, n = 2, 3 baryons from lower p<sub>T</sub> (denser)



#### **Fragmentation**

energy to create quarks from vacuum

hadrons from higher p<sub>T</sub>

# Hadronization in medium: Coalescence

0.5

0

0.5

1.0

1.5

 $(m_{\tau} - m_{o})/n (\text{GeV}/c^{2})$ 

2.0

2.5



Recombination of soft partons (thermal) with mini-jet partons Inclusion of contribution of resonance decays

- Coalescence is dominant at low p<sub>T</sub>
- Fragmentation is dominant at high  $p_T$
- Radial flow of partons (from blast-wave) needed to describe the data



### Transport approaches

momentum diffusion coeff.

#### Two main approaches:

**1) Fokker-Planck** (T<<m<sub>a</sub> soft scattering)

[TAMU, Duke, Nantes, Torino, Catania, ...]

 $\frac{\partial}{\partial t} f_Q = \gamma \frac{\partial}{\partial p_i} [p_i f_Q] + D_p \nabla_p^2 [f_Q] \qquad \text{Background:} \\ \text{Hydro/transport expanding bulk}$ 

Drag coeff. (thermalization rate)

- Fluctuation dissipation theorem  $D_p = ET \gamma$ 

- Spatial diffusion coefficient 
$$D_s = \frac{T}{M_y} = \frac{T^2}{D_p} = \frac{T}{M} \tau_{th} \qquad \langle x^2 \rangle - \langle x \rangle^2 = 6 D_s t$$
  
a measure of thermalization time

D<sub>c</sub> from IQCD

### 2) Boltzman kinetic transport

(...Kadanoff-Baym-PHSD) [Catania, Nantes, Frankfurt, LBL,...]

 $p^{\mu}\partial_{\mu}f_{O}(x,p)=C[f_{a},f_{a},f_{O}]$ 

$$\begin{split} &C[f_q, f_g, f_Q] = \frac{1}{2E_1} \int \frac{d^3 p_2}{2E_2(2\pi)^3} \int \frac{d^3 p_1}{2E_1'(2\pi)^3} \\ &\times [f_Q(p_1') f_{q,g}(p_2') - f_Q(p_1) f_{q,g}(p_2)] \\ &\times [M_{(q,g) \rightarrow Q}(p_1 p_2 \rightarrow p_1' p_2')] \\ &\times (2\pi)^4 \delta^4(p_1 + p_2 - p_1' - p_2') \end{split}$$

### **Transport coefficient**



Models not really tested at  $p \rightarrow 0$ The new data  $\rightarrow$  determine  $D_s(T)$  more properly, i.e.  $p \rightarrow 0$  where it is defined and computed in IQCD

|                         |                  |                  |                                                 |              |           |                | 2018-2019                                |
|-------------------------|------------------|------------------|-------------------------------------------------|--------------|-----------|----------------|------------------------------------------|
|                         | Catania          | Duke             | $\operatorname{Frankfurt}(\operatorname{PHSD})$ | LBL          | Nantes    | TAMU           |                                          |
| Initial HQ (p)          | FONLL            | FONLL            | pQCD                                            | pQCD         | FONLL     |                | Several Collab. In joint activities:     |
| Initial HQ $(x)$        | binary coll.     | binaryy coll.    | binary coll.                                    | binary coll. |           | binary coll.   | - EMMI-RRTF:                             |
| Initial QGP             | Glauber          | Trento           | Lund                                            |              | EPOS      |                | R. Rapp et al., Nucl. Phys. A 979 (2018) |
| QGP                     | Boltzm.          | Vishnu           | Boltzm.                                         | Vishnu       | EPOS      | 2d ideal hydro |                                          |
| partons                 | mass             | m=0              | m(T)                                            | m=0          | m=0       | m=0            | - HQ-JEIS:                               |
| formation time QGP      | $0.3~{\rm fm/c}$ | $0.6~{\rm fm/c}$ | $0.6~{\rm fm/c}$ (early coll.)                  | 0.6  fm/c    | 0.3  fm/c | 0.4  fm/c      | S. Cao et al.,Phys. Rev. C 99 (2019)     |
| interactions in between | HQ-glasma        | no               | HQ-preformed plasma                             | no           |           | no             | - Y. Xu et al., Phys. Rev. C 99 (2019)   |

### Transport coefficient



the extraction of the charm quark diffusion coefficient New joint activity needed



#### 2018-2019 Several Collab. in joint activities:

- EMMI-RRTF:
- R. Rapp et al., Nucl. Phys. A 979 (2018) - HQ-JETS:
  - S. Cao et al., Phys. Rev. C 99 (2019)
- Y. Xu et al., Phys. Rev. C 99 (2019)

### **Coalescence approach in phase space for HQ**



Wigner function <-> Wave function

$$\Phi_M^W(\mathbf{r},\mathbf{q}) = \int d^3 r' e^{-i\mathbf{q}\cdot\mathbf{r}'} \varphi_M\left(\mathbf{r}+\frac{\mathbf{r}'}{2}\right) \varphi_M^*\left(\mathbf{r}-\frac{\mathbf{r}'}{2}\right)$$

 $\varphi_M(\mathbf{r})$  meson wave function Assuming gaussian wave function

$$f_M(x_1, x_2; p_1, p_2) = A_W \exp\left(-\frac{x_{r1}^2}{\sigma_r^2} - p_{r1}^2 \sigma_r^2\right)$$

For baryon  $N_q=3$ 

$$f_H(...) = \prod_{i=1}^{N_q-1} A_W \exp\left(-\frac{x_{ri}^2}{\sigma_{ri}^2} - p_{ri}^2 \sigma_{ri}^2\right)$$

<u>Note</u>: only  $\sigma_r$  coming from  $\varphi_M(\mathbf{r})$  or  $\sigma_r^* \sigma_p = 1$ valid for harmonic oscillator with V(r)  $\sigma_r^* \sigma_p > 1$  Wigner function **width** fixed by root-mean-square charge radius from **quark model** 

| Meson                 | $\langle r^2 \rangle_{ch}$ | $\sigma_{p1}$ | $\sigma_{p2}$ |
|-----------------------|----------------------------|---------------|---------------|
| $D^+ = [c\bar{d}]$    | 0.184                      | 0.282         |               |
| $D_s^+ = [\bar{s}c]$  | 0.083                      | 0.404         |               |
| Baryon                | $\langle r^2 \rangle_{ch}$ | $\sigma_{p1}$ | $\sigma_{p2}$ |
| $\Lambda_c^+ = [udc]$ | 0.15                       | 0.251         | 0.424         |
| $\Xi_c^+ = [usc]$     | 0.2                        | 0.242         | 0.406         |
| $\Omega_c^0 = [ssc]$  | -0.12                      | 0.337         | 0.53          |

C.-W. Hwang, EPJ C23, 585 (2002); C. Albertus et al., NPA 740, 333 (2004)  $\langle r^2 \rangle_{ch} = \frac{3}{2} \frac{m_2^2 Q_1 + m_1^2 Q_2}{(m_1 + m_2)^2} \sigma_{r1}^2$ (8)  $+ \frac{3}{2} \frac{m_3^2 (Q_1 + Q_2) + (m_1 + m_2)^2 Q_3}{(m_1 + m_2 + m_3)^2} \sigma_{r2}^2$   $\sigma_{ri} = 1/\sqrt{\mu_i \omega}$  Harmonic oscillator relation  $\mu_1 = \frac{m_1 m_2}{m_1 + m_2}, \ \mu_2 = \frac{(m_1 + m_2) m_3}{m_1 + m_2 + m_3}.$ 

Normalization  $f_H(...)$  fixed by requiring  $P_{coal}(p>0)=1$  which fixes  $A_w$ , additional assumption wrt standard coalescence which does not have confinement

### **Coalescence approach in phase space for HQ**





S. Plumari, V. Minissale et al., Eur. Phys. J. **C78** no. 4, (2018) 348

- ♦ Normalization in  $f_W(...)$  fixed by requiring  $P_{coal}(p>0)=1$ : ....others modify by hand  $\sigma_r$  to enforce confinement for a charm at rest in the medium
- ♦ The charm not "coalescencing" undergo fragmentation:

$$\frac{dN_{had}}{d^2 p_T \, dy} = \sum \int dz \frac{dN_{fragm}}{d^2 p_T \, dy} \frac{D_{had/c}(z, Q^2)}{z^2}$$

charm number conserved at each p<sub>T</sub>, we have employed e<sup>+</sup>e<sup>-</sup> FF now PYTHIA

### **RHIC: results**



Data from STAR Coll., arXiv:1704.04364 [nucl-ex].

2

2

3

4 p<sub>T</sub> (GeV)

10

3

4

p<sub>T</sub> (GeV)

5

5

6

6

charm

coalescence

fragmentation coal + fragm

7

8

0

charm

 coalescence
 fragmentation coal + fragm

D<sub>s</sub><sup>+</sup> STAR (0-10) %

**RHIC: Baryon/meson** 

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

#### **Coalescence**

Following: L.W.Chen, C.M. Ko, W. Liu, M. Nielsen, PRC 76, 014906 (2007). K.-J. Sun, L.-W. Chen, PRC 95, 044905 (2017). For hypersurface of proper time  $\tau$  and non relativistic limit: for  $p_T \ll m \frac{\Lambda_c^+}{D^0} \propto \frac{g_\Lambda}{g_D} \left(\frac{m_T^\Lambda}{m_T^D}\right) e^{-(m^\Lambda - m^D)/T_C} \tau \mu_2$  $\mu_2 = \frac{m_3(m_1 + m_2)}{m_1 + m_2 + m_3}$  Is the reduced mass of the baryon

### STAR coll. arXiv:1910.14628







### **RHIC: Baryon/meson**

Recent improvements of the coalescence model Wigner function modified including both s and p wave states



#### Stronger QGP flow boost on heavier hadrons => increasing $\Lambda_c/D^0$ ratio with Npart

harder initial charm spectra at LHC reduces the  $\Lambda_c/D^0$  ratio



### LHC: results



# wave function widths $\sigma_p$ of baryon and mesons kept the same at RHIC and LHC!



The  $\Lambda_c/D^0$  ratio is smaller at LHC energies: fragmentation play a role at intermediate  $p_T$ 

S. Plumari, et al., Eur. Phys. J. C78 no. 4, (2018) 348

### **Resonance Recombination Model (RRM)**

#### Alternative dynamical realization of the coalescence approach

Hadronization proceeds via formation of resonant states when approaching the critical temperature

Starting point is the Boltzmann equation for the meson

$$\left(\frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}\right) F_M(t, \vec{x}, \vec{p}) = -\frac{\Gamma}{\gamma_p} F_M(t, \vec{x}, \vec{p}) + \beta(\vec{x}, \vec{p}) \quad \begin{array}{l} \Gamma \text{ width attributed to 2-body decays} \\ \mathsf{M} \to \mathsf{q} + \bar{\mathsf{q}}, \end{array}$$

The gain term

$$g(\vec{p}) = \int \mathrm{d}^3 x \beta(\vec{x}, \vec{p}) = \int \frac{\mathrm{d}^3 p_1 \mathrm{d}^3 p_2}{(2\pi)^6} \int \mathrm{d}^3 x \ f_q(\vec{x}, \vec{p}_1) \ f_{\bar{q}}(\vec{x}, \vec{p}_2) \ \sigma(s) \ v_{\mathrm{rel}}(\vec{p}_1, \vec{p}_2) \ \delta^{(3)}(\vec{p} - \vec{p}_1 - \vec{p}_2)$$

The cross section (**q+q**  $\rightarrow$  **M**) is approximated  $\sigma(s) = g_{\sigma} \frac{4\pi}{k^2} \frac{(\Gamma m)^2}{(s-m^2)^2 + (\Gamma m)^2}$ by a relativistic Breit-Wigner

By imposing the stationarity condition at the equilibrium

$$\begin{split} f_M(\vec{x},\vec{p}) &= \frac{\gamma_M(p)}{\Gamma_M} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^3} f_q(\vec{x},\vec{p_1}) f_{\bar{q}}(\vec{x},\vec{p_2}) \ \sigma_M(s) v_{\rm rel}(\vec{p_1},\vec{p_2}) \delta^3(\vec{p}-\vec{p_1}-\vec{p_2}) \\ \text{L. Ravagli and R. Rapp, Phys. Lett. B 655, 126 (2007).} \end{split}$$

L. Ravagli, H. van Hees and R. Rapp, Phys. Rev. C 79, 064902 (2009).

### **Resonance Recombination Model (RRM)**

#### Alternative dynamical realization of the coalescence approach

Hadronization proceeds via formation of resonant states when approaching the critical temperature

Starting point is the Boltzmann equation for the meson

$$\left(\frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}\right) F_M(t, \vec{x}, \vec{p}) = -\frac{\Gamma}{\gamma_p} F_M(t, \vec{x}, \vec{p}) + \beta(\vec{x}, \vec{p})$$

The gain term

$$g(\vec{p}) = \int \mathrm{d}^3 x \beta(\vec{x}, \vec{p}) = \int \frac{\mathrm{d}^3 p_1 \mathrm{d}^3 p_2}{(2\pi)^6} \int \mathrm{d}^3 x \ f_q(\vec{x}, \vec{p}_1) \ f_{\bar{q}}(\vec{x}, \vec{p}_2) \ \sigma(s) \ v_{\mathrm{rel}}(\vec{p}_1, \vec{p}_2)$$

The cross section  $(q+q \rightarrow M)$  is approximated by a relativistic Breit-Wigner



By imposing the stationarity condition at the equilibrium

$$f_M(\vec{x}, \vec{p}) = \frac{\gamma_M(p)}{\Gamma_M} \int \frac{d^3 \vec{p_1} d^3 \vec{p_2}}{(2\pi)^3} f_q(\vec{x}, \vec{p_1}) f_{\bar{q}}(\vec{x}, \vec{p_2}) \ \sigma_M(s) v_{\rm rel}(\vec{p_1}, \vec{p_2}) \delta^3(\vec{p} - \vec{p_1} - \vec{p_2})$$

L. Ravagli and R. Rapp, Phys. Lett. B 655, 126 (2007).L. Ravagli, H. van Hees and R. Rapp, Phys. Rev. C 79, 064902 (2009).

### **Baryons in Resonance Recombination Model (RRM)**

The 3-body hadronization process in RRM are conducted in 2 steps

#### □ STEP 1

quark-1 and quark-2 recombine into a diquark,  $q1(p1) + q2(p2) \rightarrow dq(p12)$ The diquark spectrum in analogy to meson formation

#### **STEP 2**

the diquark recombines with quark-3 into a baryon  $dq1(p12) + q3(p3) \rightarrow B$ 

The baryon spectrum in analogy to meson formation

#### Space-momentum correlations included



- low-p<sub>T</sub>(0-1GeV) c quarks preferentially populate the inner regions of the fireball
- higher-p<sub>T</sub> (3-4GeV) c quarks populate the outer regions of the fireball



### **Baryons in Resonance Recombination Model (RRM)**

The 3-body hadronization process in RRM are conducted in 2 steps

#### STEP 1

quark-1 and quark-2 recombine into a diquark, q1(p1) + q2(p2)  $\rightarrow$  dq(p12) The diquark spectrum in analogy to meson formation

#### STEP 2

the diquark recombines with quark-3 into a baryon  $dq1(p12) + q3(p3) \rightarrow B$ 

The baryon spectrum in analogy to meson formation

$$f_B(\vec{x}, \vec{p}) = \frac{\gamma_B}{\Gamma_B} \int \frac{d^3 \vec{p}_1 d^3 \vec{p}_2 d^3 \vec{p}_3}{(2\pi)^6} \frac{\gamma_{dq}}{\Gamma_{dq}} f_1(\vec{x}, \vec{p}_1) f_2(\vec{x}, \vec{p}_2) \\ \times f_3(\vec{x}, \vec{p}_3) \sigma_{dq}(s_{12}) v_{\rm rel}^{12} \sigma_B(s) v_{\rm rel}^{dq3} \delta^3(\vec{p} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3)$$

HF hadro-chemistry improved by employing a large set of "missing" HF baryon states not listed by PDG, but predicted by the relativistic-quark model

M. He, R. Rapp, Phys. Rev. Lett. **124** (2020) no.4, 042301



# Hadronization: SHMc (Baryon/meson)

charmed hadrons included into the SHM with thermal distributions, while the total charm content of the fireball is fixed by the measured open charm cross section.

### SHMc yields + blast wave $\rightarrow p_{T}$ spectra

-low pT near fully thermalized

A. Andronic et al, JHEP 07 (2021) 035





P-Glasma + MUSIC (3+1)D

10 r (fm)

Centrality 0-10% |y| < 0.9

0.5

Small systems



ALICE coll. Nature Phys. 13 (2017) 535

Small systems

**Traditional view:** 

- QGP in Pb+Pb
- no QGP in p+p ("baseline")



- Too few particles, cannot be collective
- System not in equilibrium

#### ALICE coll, arXiv:2105.06335



- Indication that fragmentation depends on the collision system
- Assumption of their universality not supported by the measured cross sections

# **Grand canonical SHM + fragmentation**

M. He & R. Rapp, PLB795(2019)117-121





assuming independent fragmentation of charm quarks but with the hadronic ratios fixed by the SHM, and then excited states decayed into ground state charm-hadrons

$$n_i = \frac{d_i}{2\pi^2} m_i^2 T_H K_2(\frac{m_i}{T_H})$$

the enhanced feeddown from excited charm baryons can account for the  $\Lambda c$  /D ratio measured

| $n_i \; (\cdot 10^{-4} \; {\rm fm}^{-3})$ | $D^0$  | $D^+$  | $D^{*+}$ | $D_s^+$ | $\Lambda_c^+$ | $\Xi_c^{+,0}$ | $\Omega_c^0$ |
|-------------------------------------------|--------|--------|----------|---------|---------------|---------------|--------------|
| PDG(170)                                  | 1.161  | 0.5098 | 0.5010   | 0.3165  | 0.3310        | 0.0874        | 0.0064       |
| PDG(160)                                  | 0.4996 | 0.2223 | 0.2113   | 0.1311  | 0.1201        | 0.0304        | 0.0021       |
| RQM(170)                                  | 1.161  | 0.5098 | 0.5010   | 0.3165  | 0.6613        | 0.1173        | 0.0144       |
| RQM(160)                                  | 0.4996 | 0.2223 | 0.2113   | 0.1311  | 0.2203        | 0.0391        | 0.0044       |

# Small systems: Coalescence in pp?







# Small systems: Coalescence in pp?



### Conclusion

#### • Light flavour production at intermediate $p_T$

Intermediate  $p_T$  sensitive to hadronization via recombination baryon/meson enhancement described by coalescence+fragmentation

• Charm hadronization in AA different than in e<sup>+</sup>e<sup>-</sup> and ep collisions

-Coalescence+fragmentation/Resonance Recombination Model enhancement of  $\Lambda_c$  production at intermediate  $p_T \rightarrow \Lambda_c/D^0 \sim 1$  for  $p_T \sim 3 \text{ GeV}$ -SHM with charm provide information on charm quark thermalization at low  $p_T$ 

#### • In p+p assuming a medium:

- Coal.+fragm. good description of heavy baryon/meson ratio (closer to the data for  $\Lambda_{\rm c}/{\rm D^0}$  ,  $\Xi_{\rm c}/{\rm D^0}$ ,  $\Omega_{\rm c}/{\rm D^0}$ )
- SHM+fragmentation able to capture the  $\Lambda_{\rm c}$  production