Heavy Ion and Fixed Target Results at LHCb erc

Giulia Manca, erzo contro di sica con Universita` degli studi di Cagliari (IT) & I.N.F.N. oni Pesanti on behalf of the LHCb collaboration alle te Energia 2021 Outline The LHCb detector at the LHC Selected results in open/hidden heavy flavours Conclusions and outlook

IFIPAE Workshop 2021, Padova, 25-26.11.2021

LHC and LHCb

pPb

2013

Pbp

PbPb

| 2015

pPb

2016

Pbp

10⁻² E

G.Manca, IFIPAE 2021

| 2018

PbPb

рНе

pAr

pNe

2015

PbAr

pHe

| 2016

pHe

pNe

2017

pAr

pNe

PbNe

2018

Fixed Target Physics with LHCb

SMOG: System for Measuring the Overlap with Gas

SMOG used for fixed target physics:

- precise vertexing allows to separate beam-beam and beam-gas contributions
- strong acceptance effects as a function of the z position
- energy densities are achieved which are between those probed at the SPS and RHIC
- => The gap between the SPS and LHC can be bridged by a single experiment

25.11.2021

G.Manca, IFIPAE 2021

Phase Space Coverage and Running Modes

Kinematic acceptance & (existing/future) beam-target combinations

y*: rapidity in nucleon-nucleon centre-ofmass system, with forward direction (positive values) in direction of the proton/beam

E _{beam} (p)		рр		p-GAS		p-Pb/Pb-p		Pb-GAS	Pb-Pb	
150 GeV		0.90 TeV								
L.38 TeV		2.76 TeV								
2.5 TeV		5 TeV		69 GeV						
3.5 TeV		7 TeV								
I.0 TeV		8 TeV		87 GeV		5 TeV		54 GeV		
5.5 TeV		13 TeV		110 GeV		8.2 TeV		69 GeV	5.1 TeV	
	0 TeV	14 TeV		115 GeV		8.8 TeV		72 GeV	5.5 TeV	
p/Pb-GAS operation so far:										
	p/Pb-	GAS op	pei	ration	SC	o far:				
	p/Pb- Collision	GAS op 1s	oei √s	(GeV)	S(o far: ength	# p	on target	Year	
	p/Pb- Collision pHe	GAS op ns	0 € √s 87	(GeV)	S(L) 8	o far: ength 4 h	# p 4.6	on target x10 ²²	Year 2016	
	p/Pb- Collision pHe pHe	GAS or	0€1 √s 87 11	(GeV)	S(L) 8 1	D far: ength 4 h 8 h	# p 4.6 3x1	on target x10 ²² 0 ²¹	Year 2016 2016	
	p/Pb- Collision pHe pHe pNe	GAS or	0 e I √s 87 11 11	(GeV) (GeV) .0	S (8 1 1	D far: ength 4 h 8 h 2 h	# p 4.62 3x1 1x1	on target x10 ²² 0 ²¹ 0 ²¹	Year 2016 2016 2015	
	p/Pb- Collision pHe pHe pNe pHe	GAS or	0000 √s 87 11 11 11	(GeV) (GeV) .0 .0	S(L 8 1 1 8	D far: ength 4 h 8 h 2 h h	# p 4.62 3x1 1x1 2x1	on target x10 ²² 0 ²¹ 0 ²¹	Year 2016 2016 2015	
	p/Pb- Collision pHe pHe pNe pHe pHe	GAS or	Oei √s 87 11 11 11	(GeV) (GeV) .0 .0 .0	S(L 8 1 1 8 1	D far: ength 4 h 8 h 2 h 2 h h 7 h	# p 4.62 3x1 1x1 2x1 4x1	on target x10 ²² 0 ²¹ 0 ²¹ 0 ²¹ 0 ²¹	Year 2016 2015 2015 2015	
	p/Pb- Collision pHe pHe pNe pHe pHe pAr PbAr	GAS or	vs 877 111 111 111 69	(GeV) (GeV) .0 .0 .0 .0	SC L 8 1 1 8 1 1	D far: ength 4 h 8 h 2 h 2 h h 7 h 00 h	# p 4.62 3x1 1x1 2x1 4x1 2x1	on target x10 ²² 0 ²¹ 0 ²¹ 0 ²¹ 0 ²² 0 ²²	Year 2016 2015 2015 2015 2015 2015	
	p/Pb- Collision pHe pHe pNe pHe pAr PbAr pNe	GAS or	Vs 87 11 11 11 11 69 69	(GeV) (GeV) .0 .0 .0 .0	SC L 8 1 1 8 1 1 1	D far: ength 4 h 8 h 2 h 1 7 h 00 h 67 h	# p 4.62 3x1 1x1 2x1 4x1 2x1 4x1	on target x10 ²² 0 ²¹ 0 ²¹ 0 ²¹ 0 ²² 0 ²² 0 ²⁰ 0 ²³	Year 2016 2015 2015 2015 2015 2015 2015 2015	

25.11.2021 G.Manca, IFIPAE 2021

Fixed target beyond 2022

New project SMOG2 up and running !

Projection of ~1 year data taking in parallel mode						
Int. Lumi.			80 pb-1			
Sys.error o	of J/Ψ	xsection	~3%			
J/Ψ	yield		28 M			
D^0	yield		280 M			
Λ_c	yield		2.8 M			
Ψ'	yield		280 k			
$\Upsilon(1S)$	yield		24 k			
$DY \mu^+\mu^-$	yield		24 k			

- SMOG2 (TDR) is a standalone gas storage cell covering z ~-500—300 mm
- Up to x100 higher gas density with same gas flow of SMOG1
- Precise measurement of the gas pressure => luminosity
- Possibility to run in parallel with pp cllisions, and inject not only noble gases

Overview of LHCb Results

The LHCb Public results [here]

Publications of the Ions and Fixed Target Working Group

[to restricted-access page]
ALL LHCB PUBLICATIONS
OTHER WORKING GROUPS
B DECAYS TO CHARMONIUM
B DECAYS TO OPEN CHARM
CHARMLESS <i>b</i> -HADRON DECAYS
b-HADRONS AND QUARKON
CHARM PHYSICS
FLAVOUR TAGGING
LUMINOSITY
QCD, ELECTROWEAK AND EXOTICA
RARE DECAYS
SEMILEPTONIC B DECAYS
DETECTOR PERFORMANCE

List of papers (Total of 18 papers and 938 citations)

TITLE	DOCUMENT NUMBER	JOURNAL	SUBMITTED ON	CITED
Measurement of the nuclear modification factor and prompt charged particle production in $p{\rm Pb}$ and pp collisions at $\sqrt{s_{\rm NN}}=5{\rm TeV}$	PAPER-2021-015 arXiv:2108.13115 [PDF]	PLB	30 Aug 2021	1
Study of $J\!/\psi$ photo-production in lead-lead peripheral collisions at $\sqrt{s_{NN}}=5.02$ TeV	PAPER-2020-043 arXiv:2108.02681 [PDF]	PRL	05 Aug 2021	3
Study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{NN}}=5~{\rm TeV}$	PAPER-2021-013 arXiv:2107.03223 [PDF]	JHEP	07 Jul 2021	1
Measurement of prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in <i>p</i> Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV	PAPER-2020-048 arXiv:2103.07349 [PDF]	Phys. Rev. C103 (2021) 064905	12 Mar 2021	1
Observation of multiplicity-dependent prompt $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions	PAPER-2020-023 arXiv:2009.06619 [PDF]	Phys. Rev. Lett. 126 (2021) 092001	14 Sep 2020	14
Observation of enhanced double parton scattering in proton-lead collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$	PAPER-2020-010 arXiv:2007.06945 [PDF]	Phys. Rev. Lett. 125 (2020) 212001	14 Jul 2020	5
Measurement of B^+,B^0 and Λ^0_b production in $p{\rm Pb}$ collisions at $\sqrt{s_{NN}}=8.16~{\rm TeV}$	PAPER-2018-048 arXiv:1902.05599 [PDF]	Phys. Rev. D99 052011 (2019)	14 Feb 2019	37
First Measurement of Charm Production in its Fixed-Target Configuration at the LHC	PAPER-2018-023 arXiv:1810.07907 [PDF]	Phys. Rev. Lett. 122 (2019) 132002	18 Oct 2018	60
<u>Study of Y production in <i>p</i>Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV</u>	PAPER-2018-035 arXiv:1810.07655 [PDF]	JHEP 11 (2018) 194	17 Oct 2018	42
Prompt Λ_c^+ production in $p{\rm Pb}$ collisions at $\sqrt{s_{NN}}=5.02~{\rm TeV}$	PAPER-2018-021 arXiv:1809.01404 [PDF]	JHEP 02 (2019) 102	05 Sep 2018	43
Measurement of antiproton production in pHe collisions at $\sqrt{s_{NN}}=110~\text{GeV}$	PAPER-2018-031 arXiv:1808.06127 [PDF]	Phys. Rev. Lett. 121 (2018) 222001	18 Aug 2018	57
Study of prompt D^0 meson production in pPb collisions at $\sqrt{s}\text{=}\text{5}\text{ TeV}$	PAPER-2017-015 arXiv:1707.02750 [PDF]	JHEP 10 (2017) 090	10 Jul 2017	103
Prompt and nonprompt J/ ψ production and nuclear modification in $p{\rm Pb}$ collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$	PAPER-2017-014 arXiv:1706.07122 [PDF]	Phys. Lett. B774 (2017) 159	21 Jun 2017	82
Study of $\psi(2S)$ production and cold nuclear matter effects in $p{\rm Pb}$ collisions at $\sqrt{s_{NN}}=5~{\rm TeV}$	PAPER-2015-058 arXiv:1601.07878 [PDF]	JHEP 03 (2016) 133	28 Jan 2016	59
Measurements of long-range near-side angular correlations in $\sqrt{s_{NN}}=5 \text{TeV}$ proton-lead collisions in the forward region	PAPER-2015-040 arXiv:1512.00439 [PDF]	Phys. Lett. B762 (2016) 473	01 Dec 2015	90
Observation of Z production in proton-lead collisions at LHCb	PAPER-2014-022 arXiv:1406.2885 [PDF]	JHEP 09 (2014) 030	11 Jun 2014	61
Study of Υ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}}=5TeV$	PAPER-2014-015 arXiv:1405.5152 [PDF]	JHEP 07 (2014) 094	20 May 2014	88
Study of J/ψ production and cold nuclear matter effects in $p{\rm Pb}$ collisions at $\sqrt{s_{NN}}$ = 5 TeV	PAPER-2013-052 arXiv:1308.6729 [PDF]	JHEP 02 (2014) 72	30 Aug 2013	191

Proton-Lead

25.11.2021

G.Manca, IFIPAE 2021

 χ_{c2}/χ_{c1} production in pPb Hick

 χ_c P-wave charmonium state

Phys. Rev. C 103, 064905

erc

- Responsible for 30% feed-down to prompt $J/\psi (\chi_{c->} J/\psi(->\mu\mu)\gamma)$;
- Difficult analysis for photon reconstruction
 - 2 approaches, using calorimeter and conversions

$\frac{1}{2c^2/\chi_{c1}} \text{ production in pPb}$

Phys. Rev. C 103, 064905

- First χ_c-measurement in heavy-ion data at the LHC
- Measured the production ratio of the two states, consistent with one and with pp measurement
- Statistics not great
 Remember in pp...

J/ψ in *p*Pb collisions@8.16 TeV

LHCb-PAPER-2017-014 PLB 774 (2017) 159

- → First analysis of run2 pPb sample !
- \rightarrow Double differential in y and p_T
- \rightarrow Prompt and non-prompt J/ ψ separated through pseudoproper time distribution
- → Measured: differential cross sections & nuclear modification factors

Double Ratios & open/hidden beauty JHEP11(2018)194

G.Manca, IFIPAE 2021

Baryon to meson ratio

→ Ratios Λ_c/D^0 in pPb collisions at 8.16 TeV

JHEP 02 (2019) 102

- Charm mesons and baryon measured in pPb/Pbp collisions at √s_{NN} = 8 TeV.
- * No strong dependance of the relative Λ_{c^+}/D^0 ratio is observed versus p_T and rapidity.
 - Decreasing trend versus p_T in pPb.
- Good description of the nuclear modification factors and forward-tobackward ratios with various nPDFs sets.
 - ➡ within large model uncertainties ...
- Tensions between models and data at higher p_T in pPb collisions.
 - Data fluctuation ?
 - Additional effect ?

Double open charm in pPb

erc

- → Search for DPS in pPb collisions at 8,16 TeV, L~30nb⁻¹, pPb & Pbp
- Measured the cross sections and kinematic correlations between different pairs of charm hadrons
- Confirmation of enhancement of DPS in pPb w.r.t. SPS

INFN

Open charm in pPb at 8.16 TeV

Analysis being refined for D⁰, being refined for other open charm states

- * Preliminary results for D⁰ cross-section in pPb/Pbp collisions at $\sqrt{s_{NN}} = 8$ TeV up to $p_T = 16$ GeV/c.
- * Improved statistics by factor 20 compared to previous LHCb results.
- * Tension between data and nPDFs predictions. Additional effects required.

erc

Fixed target

25.11.2021

G.Manca, IFIPAE 2021

Charm production in fixed-target

arXiv:1810.07907

Probing the intrinsic charm content of the nucleon

Charm production in pAr & pHe

Yields agree reasonably with theory in shape and value

- Phenomenological parameterisation for J/ψ (JHEP 1303(2013) 122)
- HELAC-Onia model, calibrated on collisions data (STAR) (EPJC 77 (2017))

- Open-charm production in fixed-target LHCb acceptance : access to **anti-shadowing** and **intrinsic charm** content in the nucleons.
- * **Precise** J/ψ and D^0 measurements in pHe.
- Good agreement between data and theory with no strong intrinsic charm contribution observed.

Event 924938 Run 168926 Tue, 01 Dec 2015 19:34:07

. Swiftwarents

Lead-Lead

- A proxy of the impact parameter b of the collisions can be given by "centrality" classes, defined as percentile of the inelastic PbPb/PbNe cross section as $f(\sqrt{s})$
- We use the energy deposit in the Electromagnetic calorimeter to extract the centrality value through the Glauber model
- We use the MC Glauber model to derive N participants (<Npart>), N binary collisions (<Ncoll>), impact parameter (), N

 $N_{\rm anc} = f \times N_{\rm part} + (1 - f) \times N_{\rm coll},$

PbPb @ 5 TeV c.o.m. Energy

PbNe @ 69 GeV c.o.m. Energy

ancestors

G.Manca, IFIPAE 2021

Upgraded LHCb

LHCb detector : season 3 (2022)

(slide from B.Audurier at ECT* workshop in Trento, Nov 2021)

Heavy-ion prospects

→ In LHCb-CONF-2018-005

HELAC-Onia + EPPS16 nPDF predictions

- * Studies in this document :
 - D0-D0 correlations.
 - B+ meson productions.
 - Drell-Yan production
- Results obtained assuming similar systematics as in Run 2.
 - Dominated by tracking uncertainties and branching ratios in this scenario.
- Projections show valuable inputs for nPDF fit with limited data taking periods.

(slide from B.Audurier at ECT* workshop in Trento, Nov 2021)

25.11.2021

Summary and Outlook

- LHCb successfully participated in heavy ion data-taking in 2015,2016 & 2018
 - Collected good statistics \rightarrow could benefit from larger data samples
 - Many measurements performed; first ones with PbPb collisions ever!!
- Charmonium production in PbPb ultra peripheral collisions: refined analysis, good agreement with theory; 2018 results on the way!
- J/ψ studies in PbPb peripheral (hadronic!) collisions using centrality for the first time ! Results with 2018 dataset compared with theoretical predictions, discussion with theorists very lively
- More new results soon with these data
- Many results also studied in view of the new detector in Run3/4
 - Yellow report on the way LHCB-TDR-12 17; CERN-LHCC-2018-026; LHCB-TDR-019

