Heavy-flavour flow and event-shape engineering

Fabrizio Grosa CERN

CERN

Terzo incontro sulla Fisica degli Ioni Pesanti Padova | 25–26 November 2021

Azimuthal anisotropies of HF particles in the QGP

- A colour-deconfined medium, called *quark-gluon plasma* (QGP) is created in ultrarelativistic heavy-ion collisions • The initial geometrical anisotropy is transferred to a momentum anisotropy by the pressure gradients

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left\{ 1 + \sum_{i=1}^{\infty} v_{\mathrm{n}} \cos[\mathrm{n}(\varphi - \Psi_{\mathrm{n}})] \right\}$$

Azimuthal anisotropy in HF hadron production

- Participation of charm and beauty quarks in the collective motions and their possible thermalisation
- Study path-length dependence of in-medium parton energy loss
- Sensitivity to initial-state event-by-event fluctuations
- → Probe strong initial electromagnetic fields in the QGP

Elliptic flow of open and hidden charm mesons

ALICE prompt D: PLB 813 (2021) 136054 **CMS** prompt D⁰: PRL 120 (2018) 202301

Second ALICE J/ψ forward *y*: JHEP 10 (2020) 141 **Set ALICE J/ψ mid** *y:* JHEP 10 (2020) 141

- Significant v_2 for open and hidden charm mesons \rightarrow charm participation to collective motions
- $p_T < 3-4$ GeV/*c*: mass hierarchy

→
$$V_2(J/\Psi) < V_2(D,D^0) < V_2(\pi)$$

• $3-4 < p_T < 6-8 \text{ GeV}/c$: coalescence

→
$$V_2(J/\Psi) < V_2(D,D^0) = V_2(\pi)$$

• $p_T > 8 \text{ GeV}/c$: path-length dependence of in-medium energy loss

•
$$V_2(J/\psi) = V_2(D,D^0) = V_2(\pi)$$

 \implies ALICE π^{\pm} : JHEP 09 (2018) 006

D-meson $v_2{2}$ vs. $v_2{4}$

F. Grosa (CERN) fgrosa@cern.ch

- D-meson v_2 {4} smaller than v_2 {2}
 - Expected in case of event-byevent fluctuations in the flow signal
- Similar effect for charm and light hadrons
- Described by theoretical models based on charm-quark transport in a hydrodynamically expanding QGP

Score CMS prompt D⁰: CMS-PAS-HIN-20-001

Triangular flow of open and hidden charm mesons

ALICE prompt D: PLB 813 (2021) 136054 **CMS prompt D**⁰: PRL 120 (2018) 202301

 \implies ALICE J/ ψ forward y: JHEP 10 (2020) 141 \implies ALICE π^{\pm} : JHEP 09 (2018) 006

F. Grosa (CERN) fgrosa@cern.ch

- Significant *v*₃ for open and hidden charm mesons \rightarrow charm sensitive to initialstate event-by-event fluctuations
- $p_T < 3-4$ GeV/*c*: mass hierarchy

→
$$V_3(J/\Psi) < V_3(D,D^0) < V_3(\pi)$$

• $3-4 < p_T < 6-8 \text{ GeV}/c$: coalescence

→
$$V_3(J/\Psi) < V_3(D,D^0) = V_3(\pi)$$

• $p_T > 8 \text{ GeV}/c$: path-length dependence of in-medium energy loss

$$\bullet V_3(\mathsf{J}/\psi) = V_3(\mathsf{D},\mathsf{D}^0) = V_3(\pi)$$

D-meson azimuthal anisotropy vs. transport models

ALICE prompt D: PLB 813 (2021) 136054

- Transport of charm quarks in an hydrodynamically expanding medium via Boltzmann or Langevin equations
 - → Interactions of charm quark in the medium
 - Low *p*_T: elastic scatterings contribute to transfer collective motion from light to charm quarks
 - High *p*_T: path-length dependence of energy loss
 - → Hadronisation of charm quark in the medium
 - Recombination with flowing light quarks enlarges charm-hadron v_2 compared to quark-hadron v_2

AMU: PRL 124 (2020) 04230´ **MC@sHQ+EPOS2: PRC 89 (2014) 014905 Solution** LGR: Eur. Phys. J. C, 80 7 (2020) 671 **ELIDO: PRC 98 (2018) 064901 PHSD:** PRC 93 (2016) 034906

Ecatania: PLB 805 (2020) 135460 **POWLANG: EPJC (2019) 79:494 EBT:** PRC 94 (2016) 014909 **BAMPS: JPG 42 (2015) 11, 115106 Solution** DAB-MOD: PRC 102 (2020) 024906

D-meson azimuthal anisotropy vs. transport models

ALICE prompt D: arXiv:2110.09420

30

• Transport of charm quarks in an hydrodynamically expanding medium via Boltzmann or Langevin equations

> diffusion coefficient D_s related to thermalisation time of charm quark

$$1.5 < 2\pi D_s T_c < 4.5$$

for models that describe data with $\chi^2/ndf < 5$

 $\tau_{\rm charm} = (m_{\rm charm}/T) \cdot D_s = 3 - 9 \, {\rm fm}/c \approx \tau_{\rm QGP}$

AMU: PRL 124 (2020) 04230´ **MC@sHQ+EPOS2: PRC 89 (2014) 014905** EGR: Eur. Phys. J. C, 80 7 (2020) 671 **SELIDO: PRC 98 (2018) 064901 PHSD:** PRC 93 (2016) 034906

Ecatania: PLB 805 (2020) 135460 **POWLANG: EPJC (2019) 79:494 EBT:** PRC 94 (2016) 014909 **BAMPS: JPG 42 (2015) 11, 115106 Solution** DAB-MOD: PRC 102 (2020) 024906

Charm vs. light elliptic flow

- D-meson v_2 studied as a function of average event flow with event-shape engineering technique
 - Positive correlation between heavy and light hadron v_2
 - Sensitivity for charm to event-byevent fluctuations

20% smallest q_2^{TPC} $\langle v_2 \rangle_{\text{small}-q_2} < \langle v_2 \rangle_{\text{unb}}$

20% largest q_2^{TPC} $\langle v_2 \rangle_{\text{large}-q_2} > \langle v_2 \rangle_{\text{unb}}$

ALICE prompt D: PLB 813 (2021) 136054

ESE elliptic flow ratios

ALICE prompt D: PLB 813 (2021) 136054

- Models based on charm-quark transport in an hydrodynamically expanding medium describe q_2 dependence of D-meson v_2 flow
- Predicted variation of D-meson v₂ in ESE-selected samples with respect to unbiased sample similar for different transport parameters (e.g. POWLANG HTL vs. IQCD)

POWLANG: EPJC (2019) 79:494

See DAB-MOD: PRC 102 (2020) 024906

16

20% smallest q_2^{TPC}

20% largest q_2^{TPC} $\langle v_2 \rangle_{\text{large}-q_2} > \langle v_2 \rangle_{\text{unb}}$

Ecatania: PLB 805 (2020) 135460 LIDO: PRC 98 (2018) 064901

ESE yield ratios

Set ALICE prompt D: PLB 813 (2021) 136054

• No significant modification of the p_{T} -differential production yields of D-mesons in different ESEselected samples of events

20% smallest q_2^{TPC} $\langle v_2 \rangle_{\text{small}-q_2} < \langle v_2 \rangle_{\text{unb}}$

20% largest q_2^{TPC} $\langle v_2 \rangle_{\text{large}-q_2} > \langle v_2 \rangle_{\text{unb}}$

Search for strong electromagnetic fields: charge-dependent D-meson v_n

- Initial strong electric (magnetic) fields are expected to produce a charge dependence in the elliptic (directed) flow
 - Charm quarks ideal probes due to their early production

Solution U. Gürsoy et al, PRC 98 (2018) 055201 S. K. Das et al, PLB 768 (2017) 260-264 **A.** Dubla et al, MPA Vol. 35, No. 39 (2020) 2050324

- No indication of charge dependent v_2 as a function of rapidity
- 2.7σ significant indication of y-dependent charge difference for D⁰ mesons

Elliptic flow of open-beauty hadrons

ALI-PUB-347963

- Positive v_2 of leptons from beauty-hadron decays both at low and high p_T
 - Indication of participation in the collective motions of the system
 - → Lower than charm (larger mass)
 - Expected contribution from hadronisation via coalescence with light quarks from the medium

F. Grosa (CERN) fgrosa@cern.ch

MC@sHQ+EPOS2: PRC 89 (2014) 014905

Triangular flow of open beauty hadrons

- No indication of positive v_3 of muons from beauty-hadron decays neither in central nor semicentral collisions
 - \rightarrow Compatible with very low v_3 predicted by DAB-MOD transport model
 - → Lower *p*_T range important to draw a firm conclusion

Elliptic flow of hidden-beauty mesons

- v_2 of $\Upsilon(1S)$ and $\Upsilon(2S)$ compatible with zero within large uncertainties in all the p_T and centrality intervals measured
 - ➡ No contribution from coalescence with light quarks from the QGP
 - ➡ Does beauty quark flow?

F. Grosa (CERN) fgrosa@cern.ch

ncertainties in all the p_T and centrality intervals measured om the QGP

Summary and conclusions

- - Indicate significant degree of thermalisation of charm quarks in the QGP
 - Indicate sensitivity to initial-state event-by-event fluctuations
 - Contribution from charm-quark hadronisation via coalescence
- Search for strong early electromagnetic fields in heavy-ions \rightarrow Electric field: no significant D-meson charge-dependent v_2 \rightarrow Magnetic field: hint of D-meson charge-dependent v_1
- Beauty-quark flow: positive v_2 for open-beauty hadrons, no significant v_2 for bottomonia
 - Does beauty quark flow?
 - Only contribution from beauty-quark hadronisation via coalescence?

• Charm-quark flow: positive v_2 and v_3 of open and hidden charm mesons, correlated with light hadrons

ADDITIONAL SLIDES

Heavy flavours in the QGP

- QCD calculations on lattice predict a phase transition from the ordinary nuclear matter to a colour-deconfined medium,
 - called *quark-gluon plasma* (QGP)
 - created in ultrarelativistic heavy—ion collisions
 - very high energy density $\varepsilon > 15 \text{ GeV/fm}^3$
 - → after a pre-equilibrium phase expands hydrodynamically
- Heavy flavours: produced in shorter time scales than QGP formation time
 - → $\tau_{\rm HF} \lesssim \hbar/m \approx 0.05 \cdot 0.1 \, {\rm fm}/c \, {\rm depending \, on } p_{\rm T}$
 - → $\tau_{\rm QGP \ form}$ (LHC) $\approx 0.3 \ fm/c$

- HF experience the
- full system evolution

PRC 89 (2014) 034906

n

Heavy-flavour interactions in the QGP

→ $\tau_{\rm QGP \, lifetime} \approx 10 \, {\rm fm}/c$

- HF propagate in the QGP with a Brownian motion
 - interact with medium constituents
 - Ioose energy via elastic collisions and
 - radiative processes
 - heavy-quark thermalisation in the QGP?

- → $\tau_{\rm HF} \lesssim \hbar/m \approx 0.05 \cdot 0.1 \, {\rm fm}/c \, {\rm depending \, on } p_{\rm T}$
- → $\tau_{\rm QGP \, form}$ (LHC) $\approx 0.3 \, {\rm fm}/c$
 - Sec 89 (2014) 034906
 - See PLB 696 (2011) 328-315

Heavy-flavour hadronisation in the QGP

- Competing mechanisms for the HF hadronisation in the QGP
 - Fragmentation $D_q \rightarrow h(z_q, Q^2)$
 - energy-loss of partons while traversing the QGP modifies fraction of the parton momentum *z*_q taken by the hadron
 - equal for all hadron species
 - Coalescence
 - → partons close in phase space can recombine into hadrons
 - quarks with different mass coalesce if have similar velocities

See PRL 90 (2003) 202302 **PRL 90 (2003) 202303** See PRC 67 (2003) 064902 SPLB 595 (2004) 202-208

- Statistical hadronisation model
 - → Hadrons emitted from the interaction region in statistical equilibrium at
 - the QGP phase boundary

See PLB (2008) 659:149-155

Charge-dependent directed flow

S. K. Das et al, PLB 768 (2017) 260-264

- Originated by two competing effects:
 - → Faraday effect: electric field induced by decreasing **B**

→ Hall effect: Lorentz force induced by moving charges $\overrightarrow{F} = q \overrightarrow{v} \times \overrightarrow{B}$

Strange D-meson elliptic flow

• No significant difference between D_{s}^{+} and non-strange D mesons within current uncertainties

Second ALICE prompt D: PLB 813 (2021) 136054 Second ALICE prompt D_s+: arXiv:2110.10006

Centrality and rapidity dependence of charm meson elliptic flow

F. Grosa (CERN) fgrosa@cern.ch

Event-shape engineering for the D-meson elliptic flow

See PLB 813 (2021) 136054

20% smallest q_2^{TPC}

 $\langle v_2 \rangle_{\text{small}-q_2} < \langle v_2 \rangle_{\text{unb}}$

20% largest q_2^{TPC} $\langle v_2 \rangle_{\text{large}-q_2} > \langle v_2 \rangle_{\text{unb}}$ • The event-shape engineering (ESE) technique relies on the classification of events at a certain centrality according to the magnitude of the secondharmonic reduced flow vector:

$$q_{2} = |\overrightarrow{Q}_{2}| / \sqrt{M}$$
$$\overrightarrow{Q}_{2} = \sum_{j=1}^{M} e^{i2\varphi_{j}}$$

Search for strong magnetic fields: charge-dependent D-meson v₁

ALI-PUB-483806

Solution ALICE D⁰: PRL 125 (2020) 022301

- Charm-quark production time comparable with maximum of magnetic field created in heavy-ion collisions
 S. K. Das et al, PLB 768 (2017) 260-264
 A. Beraudo et al, arXiv:2102.08064
 - Charge-dependent directed flow ideal
 observable to study early magnetic fields
- Indication of *y*-dependent charge difference
 - Different magnitude for charged particles and D⁰ mesons
 - → 2.6σ significance for charged particles
 - → 2.7σ significance for D⁰ mesons

n

S

S

Y(1S) elliptic flow vs. transport models

CMS Y(1S): arXiv:2006.07707 **Solution** ALICE **Y**(1S): PRL 123 (2019) 192301 **Set ALICE J/ψ: JHEP 10 (2020) 141**

TAMU: PRC (2017) 96, 054901 **BBJS:** PRC 100 (2019) 051901

Hong, Lee: PLB 801 (2020) 135147

Scaling of *v*₂ with constituent quarks

 \implies ALICE π^{\pm} : JHEP 09 (2018) 006 **CMS prompt D**⁰: PRL 120 (2018) 202301

Set ALICE J/ψ forward *y*: JHEP 10 (2020) 141 **Set ALICE J/ψ mid** *y*: JHEP 10 (2020) 141

• v_n of D mesons can be obtained as a weighted average of the one of charm and light quarks:

$$v_{n}^{D}(p_{T}^{D}) = v_{n}^{q}(p_{T}^{q}) + v_{n}^{c}(p_{T}^{c})$$

- \rightarrow Quark p_T and v_n obtained as half of those of charged pions and J/Ψ mesons
- Best agreement in case of $p_{\rm T}^{\rm D}/p_{\rm T}^{\rm q} = 0.4$

Elliptic flow of open-beauty hadrons - small systems

• No significant v_2 of muons (D⁰) from beauty-hadron decays in pp (pPb) collisions

- → Is it zero or just very small?
- \rightarrow v₂ mainly driven by beauty-quark coalescence in heavy-ion collisions?
- → For more information about small systems see presentation by Georgios Krintiras on Wed June 9th at 16:00

 $\text{CMS } c, b \rightarrow D^0, c \rightarrow J/\psi$: PLB 813 (2021) 136036 **Set ALICE J/ψ: PLB 780 (2018) 7-20**

D-meson vs. muons from D-meson decays

≈ ATLAS c → µ: PLB 807 (2020) 135595 Sec CMS prompt D⁰: PRL 120 (2018) 202301

Challenges for models: simultaneous descriptions

ALICE b → e: PRL 126 (2021) 162001 **ALICE Y(1S):** PRL 123 (2019) 192301

TAMU: PRL 124 (2020) 042301, NPA 943 (2015) 147–158, PRC (2017) 96, 054901

