Experimental overview on hard probes and quarkonium

Padova - November the 25th 2021

Experimental overview on hard probes (including quarkonium)

Padova - November the 25th 2021

Experimental overview on hard probes (including quarkonium)

Padova - November the 25th 2021

Space time evolution of A-A collision

Hard probes of A-A collision

Hard probes in nucleus-nucleus collisions:

- produced at the very early stage of the collisions in partonic processes with large Q²
- pQCD can be used to calculate initial cross sections
 - traverse the hot and dense medium
 - can be used to probe the properties of the medium

Electromagnetic probes

Electromagnetic probes in nucleus-nucleus collisions

- photons, W and <u>Z bosons</u>, dileptons
 - do not carry a color charge
 - provide information about initial state / nuclear PDFs

Also, prompt photons or Z⁰ to study the medium suppression:

- Prompt photon and jet production follow the pQCD
- Photons do not interact with the created medium (mfp~100 fm)
- Jets (hadrons) are sensitive to final state effects also.
 - Very precise measurement of the energy of the outgoing parton
 from the hard scattering

EM probes: from "control experiment" to "constrainer" of initial conditions

MadGraph5_aMC@NLO

Z⁰ boson in Pb-Pb

□ V₂ consistent with 0 → unaffected by finalstate effects such as hydrodynamic flow and energy loss

- Depletion not expected by final state interactions
- → Initial-state geometry ?
- centrality selection in peripheral collisions ?

JETS

Jets are quenched in AA collisions

up to $p_T = 1 \text{ TeV}$

enhancement of particles carrying a small fraction of the jet momentum is observed in Pb-Pb w.r.t. pp, which increases with centrality and with increasing jet transverse momentum

25/11/21

Z tagged jets

Z vs γ -tagged jets:

- both provide (@LO) the p_T and azimuthal direction of the partner hard-scattered parton
- At fixed p_T jets balancing Z and γ arise from different Q² values
 - \rightarrow sensitivity of the energy loss process to parton virtuality
- The per-Z yields modified in PbPb compared to pp
 Softer p_T^{ch} distribution with suppression at high p_T^{ch} and enhancement at low p_T^{ch}
 significant centrality dependence
 Hybrid model, JEWEL and COLBT catch the low p_T^{ch} increase only by including back-reaction, medium recoils, and jet-induced medium

Jets with heavy flavour

ALICE quite competitive; covered by Marianna

pp: important input for MC generators (observed a syst. shift) Pb-Pb: not yet direct indication of modifications in central collisions \rightarrow Medium induced radiation may have slightly modified the structure

•

Heavy flavour: charm hadro-chemistry

Energy loss depends on: • Color charge $\Delta E_g > \Delta E_{u,d,s}$ • Parton mass $\Delta E_c > \Delta E_b$ **At the parton level**: $\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

Naive expectation: $R_{AA}(\pi) > R_{AA}(D) > R_{AA}(B)$?

Soon understood with LHC run1 data

Energy loss depends on: • Color charge $\Delta E_g > \Delta E_{u,d,s}$ • Parton mass $\Delta E_c > \Delta E_b$ **At the parton level**: $\Delta E_q > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

Naive expectation: $R_{AA}(\pi) > R_{AA}(D) > R_{AA}(B)$?

Soon understood with LHC run1 data

Energy loss depends on: • Color charge $\Delta E_q > \Delta E_{u,d,s}$ • Parton mass $\Delta E_{\rm c} > \Delta E_{\rm b}$ At the parton level: $\Delta E_{\rm q} > \Delta E_{\rm u,d,s} > \Delta E_c > \Delta E_{\rm b}$

Naive expectation: $R_{AA}(\pi) > R_{AA}(D) > R_{AA}(B)$?

Soon understood with LHC run1 data

Energy loss depends on: • Color charge $\Delta E_g > \Delta E_{u,d,s}$ • Parton mass $\Delta E_c > \Delta E_b$ **At the parton level**: $\Delta E_q > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

Naive expectation: $R_{AA}(\pi) > R_{AA}(D) > R_{AA}(B)$?

Spectacular performance of CMS

Giuseppe E. Bruno

$\dots p_T$ range still drives the physics

... p_T range still drives the physics

Prompt D mesons at high p_T

Gluon radiation dominant energy loss mechanism
 Collective flow effects and modification to the hadronization mechanism negligible

The three models have different implementations of radiative energy loss with dependence on color charge, parton mass and path length in the medium

This is "state of the art" after LHC run1&run2

Prompt vs. non-prompt D mesons

Prompt D meson R_{AA} and v_2

Model ingredients:

- transport of c quarks in an hydrodynamically expanding medium (via Boltzmann or Langevin equations)
- c quark energy loss (elastic and/or inelastic collisions)
- c-quark hadronisation via coalescence

This is "state of the art" after LHC run1&run2

25/11/21

... deeper insight into models

 Role of radiative dE/dx vs. elastic collisions
 Switching off radiative E loss

Role of hadronization

Switching off recombination

25/11/21

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

latest ALICE data (including v₂), arXiv:2110.09420: 1.5<2πT_cD_s<4.5

Quarkonium

I'll discuss a few results

Detailed experimental review covered by Fiorella this morning

 T/T_c

2

1.2

 $\leq T_C$

[fm⁻¹]

r(15)

 $\chi_b(1P)$

J/ψ(1S)

Υ"(3S) χ_b'(2P)

(25)

 $J/\psi R_{\Delta\Delta} VS. p_T$

$J/\psi R_{AA} vs. p_T$

J/ψ in jets

J/ψ in jets

In pp prompt J/ψ are produced less isolated than predicted by event generator (PYTHIA)
J/ψ production later in parton showers underestimated

In Pb-Pb

J/ ψ produced with a large degree of surrounding jet activity more suppressed than those isolated

Upsilon

CMS, PLB 790 (2019) 270

Spectacular signature of the "sequential" dissociation
 Y(1S)

suppression as due to suppression of its feed-down components

Y R_{AA} versus models

CMS, PLB 790 (2019) 270 ALICE, PLB 822 (2021) 136579

Many calculations with different approaches and ingredients (detailed in backup) Globally reproducing the experimental trends sometimes within large uncertainties

Break-up by **comover** interaction + nCTEQ15 parametrisation Transport description in-medium dissociation and recombination + nPDF sets **Hydrodynamic** framework modification of the heavy-quark potential

Conclusions / outlook

Hard probes allow us to infer the properties of the fireball since the very early stage of the collisions all along its evolution

Hard probes are rare probes a lot to come with LHC run3 & run4 data, and beyond

Extra

Moments of a heavy ion collision

- 1. initial collisions ($t \le t_{coll} \simeq \frac{2R}{\gamma_{cm}c}$; $R_{Pb} \simeq 7 fm$)
- 2. thermalization: equilibrium is established ($t \leq 1 \frac{fm}{c} = 3 \ 10^{-24} s$)
- 3. expansion $(\langle v \rangle \simeq)$ and cooling (t < 10-15 fm/c) ...deconfined stage
- 4. hadronization (quarks and gluons form hadrons)
- 5. chemical freeze-out: inelastic collisions cease; particle identities (yields) frozen
- 6. kinetic freeze-out: elastic collisions cease; spectra are frozen

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Nuclear modification factor

- □ Production of hard probes in A-A expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
 □ Observable: nuclear modification factor
 AA = $\frac{1}{N_{coll}} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T} = \frac{1}{T_{AA}} \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T} \sim \frac{\text{QCD medium}}{\text{QCD vacuum}}$
 - □ If no nuclear effects are present $\rightarrow R_{AA} = 1$
 - Effects from the hot and deconfined medium created in the collision \rightarrow breakup of binary scaling $\rightarrow R_{AA} \neq 1$
 - Parton energy loss via gluon radiation and collisions in the medium
 - Quarkonium melting in the QGP
 - □ But also initial state effects (e.g. nuclear modification of PDFs) may lead to $R_{AA} \neq 1$
 - Need control experiments: medium-blind probes (photons, W, Z) + p-A collisions

Tagged Jets - EW Boson Recoil

At leading order, the boson and the jet are produced back to back in the azimuthal plane, with equal p_T

Modifications of jet substructure in the QGP

Follow up on groomed jet substructure in AA => subjet tagging - quark vs. gluon

motivations:

- investigate redistribution of energy from the leading subjet (at different r<R) – collimation and z≈1 suppression
- sensitivity to quark vs. gluon jet in-medium energy loss?

γ + jet in Pythia 8

Z-tagged Jets – comparison to models

Does a jet in medium leave a wake?

- Check in Hybrid model jet quenching theory with strongcoupling
- Hybrid model does not describe lowp_T excess in data without such a back-reaction

Medium modification of γ -jets

Enhancement of soft hadrons in large angles

Luo, Cao, He & XNW, arXiv:1803.06785

Chen, Cao, Luo, Pang & XNW, 2005.09678

25/11/21

Giuseppe E. Bruno

FERMILAB-Pub-82/59-THY August, 1982

Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p_T Jets in Hadron-Hadron Collisions.

> J. D. BJORKEN Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

should be made to look for it. In particular, it should be interesting to carefully study all jet phenomena as function of associated multiplicity. In addition, one might anticipate, even in the presence of quark-gluon plasma and "extinction," special classes of events associated with particular collision geometries (Fig. 3). Most spectacular would be events (Fig. 3b) containing one clean observable high- p_T jet, with no sign whatsoever of a recoiling jet, and where the p_T of the observed jet is (visibly) balanced by a large aggregation of low p_T particles.

	We	also	note	that,	while	"extincti	on"	may	be	an	impor	tant	
	phenomen	on,	it sh	ould	not be	dominant	for	had	ron-	jets	from	the	
	anticipated W and Z electroweak bosons. And as one enters the high- \mathbf{p}_{T}												
region of hundreds of GeV, it would require an increase in the height of													
	the central-plateau by an order of magnitude to extinguish or greatly												
	modify t	he pro	oduced	jets.									

Dead cone effect in pp

25/11/21

Giuseppe E. Bruno

N-subjetiness

Quantifies to which degree a jet has N (or fewer)-pronged structure

$$\tau_N = \frac{1}{p_{\mathrm{T, jet}} \times R} \sum_{k} p_{\mathrm{T, k}} \min(\Delta R_{1,k}, \Delta R_{2,k}, \dots, \Delta R_{N,k})$$

N axes determined by declustering jet by N-1 steps

Axes depend on reclustering algorithm (different reclustering algorithms -> axes sensitive to different regions of splitting phase space)

1) k_T reclustering: first splitting exposes hardest two subjets
 2) C/A: first splitting exposes largest-angle subjets
 3) Soft-drop (C/A, z_{cut} = 0.1, β = 0): first accepted structure correlated to earliest hard splitting in jet

$$\tau_2/\tau_1$$
 sensitive to exactly 2-prongs in a jet

25/11/21

Two-pronged jet

Large τ_1

Small T2

Z^0 boson as a function of p_T

MadGraph5_aMC@NLO calculations with different (n)PDF

In-medium energy loss: charm vs. beauty

$B_{c}^{+}R_{AA}$ Compared to Quarkonia at CMS

- $B_{c}^{+} R_{AA}$ is higher than Quarkonia
 - Binding energy between J/ψ and Y(1S)
 - Large experimental uncertainties prevent
 a firm conclusion
- Recombination of charm and beauty could increase the $\rm B_{c}^{+}$ $\rm R_{AA}$
- Would be interesting to go to low $p_T < 5$ GeV with future CMS and ALICE data in Run 3+4

Y R_{AA} versus centrality

Phenomenological models for Y

Semi-classical calculations based on transport or rate equations

- Comover interaction model [JHEP 10 (2018) 094]
 Final-state suppression by interaction with comoving particles + nCTEQ15 parametrisation
- Transport descriptions: in-medium dissociation and recombination processes
 - « transport model » a.k.a TAMU = isotropic fireball + effective absorbtion [PRC 96 (2017) 054907]
 - « coupled Boltzmann equations » = 2+1d viscous hydrodynamics + EPPS16 parametrisation [JHEP 01 (2021) 046]

Hydrodynamic calculations [Universe 2 (2016) 3]

Thermal modification of the heavy-quark potential inside a 3+1d anisotropic medium. No nPDF parametrisation nor regeneration mechanism.

All account for the suppression of feed-down contributions but with different treatments.

nuclear effects / nPDF regeneration term

ALICE HF v_2 results (ALICE) vs TAMU

2

Open charm v_2 compilation

