Terzo Incontro di Fisica con Ioni Pesanti alle Alte Energie

Collectivity from small to large systems

Livio Bianchi * Università & INFN Torino

* livio.bianchi@cern.ch

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

Collisions of heavy nuclei:

• Study collective phenomena

 \hookrightarrow High energy density, large medium \rightarrow radial and anisotropic flow

• Test statistical limit of particle production

 \hookrightarrow Large multiplicities \rightarrow Grand Canonical statistical treatment applicable

- Disentangle hadronic phase effects
 - → Large system → nuclei formation at kinetic freeze-out (coalescence)? Short-living resonance disappearance (re-scattering)?

Efficient way to describe experimental results: VISCOUS HYDRO + STATISTICAL HADRONIZATION

J. E. Bernhard at al., Phys. Rev. C 94, 024907 (2016) J. E. Bernhard at al., Nat. Phys. 15, 1113–1117(2019) J. E. Bernhard at al., Phys. Rev. C 101, 024911 (2020)

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

High energy hadronic interactions are far from being «elementary»:

- Multi Parton Interactions (MPI) needed to explain multiplicity
- MPI cross-talk needed to explain p_{T} spectra at LHC (e.g. Color Reconnection)
- Initial state parton density fluctuations can lead to final-state phenomena

Questions:

- How can we use small systems to better interpret large systems observations?
- Do the observations in small colliding systems imply QGP formation there?

Hadron abundancies

Hadrochemistry in central A-A collisions at the LHC

Production of light flavor hadrons fit over 9 orders of magnitude by Statistical Hadronization Model (SHM) in its Grand Canonical Ensemble (GCE) formulation

Hadron abundancies can be described as emerging from a hot Hadron-Resonance Gas in thermal equilibrium

At LHC:
$$\mu_B \sim 0$$
 T_{ch} ~ 153 MeV

How do these yields compare to those measured in smaller colliding systems?

Short-living resonances not described (influence of hadronic phase)*

*Not included in fit

Friction with p being addressed through S-matrix approach / re-scattering

Phys. Lett. B 792, 304-309 (2019) Phys. Rev. C 90 (2014) 5, 054907 Other approaches try to solve p & Ξ issues with flavor-dependent T_{ch}

P. Alba et al., Phys. Rev. C 101, 054905 (2020)

Loosely bound (anti-)nuclei reproduced by SHM (snowballs in hell)

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

 h/π smoothly evolves across multiplicity reaching thermal values in Pb-Pb at the LHC

 h/π smoothly evolves across multiplicity reaching thermal values in Pb-Pb at the LHC

No \sqrt{s} (down to RHIC) or colliding system dependence

Evolution depends on the hadron: the stranger the steeper

High-multiplicity pp: ~ same hadrochemistry as in a fully thermalized system

Adapting SHM: canonical suppression, γ_s , ...

Livio Bianchi IFIPAE 2021 PD 25/11/2021

27

CSM

<u>Canonical Statistical Model</u>: as multiplicity decreases quantum numbers (Q,B,S) are forced to be conserved in smaller and smaller volumes

Qualitatively describes Ξ and Ω , but big issues with p (B conservation) and ϕ (Q conservation for π)

Adapting SHM: canonical suppression, $\gamma_{\rm s}$, ...

CSM

 $CSM + \gamma_s$

<u>Canonical Statistical Model</u>: as multiplicity decreases quantum numbers (Q,B,S) are forced to be conserved in smaller and smaller volumes

Qualitatively describes Ξ and Ω , but big issues with p (B conservation) and ϕ (Q conservation for π)

Introducing undersaturation parameter γ_s (incomplete equilibration of S) and fitting also T_{ch} and dV/dy in all systems: better agreement, but still problems with p, K and ϕ

PD 25/11/2021

arget p

x [fm]

K. Werner, Phys. Rev. Lett. 98, 152301 (2007) Y. Kanakubo at al., Phys. Rev. C 101, 024912 (2020)

Models starting from small systems

27

Models traditionally applied in pp can qualitatively reproduce the data if they introduce **color ropes** * (densely-packed strings → higher string tension)

* Still problems with protons

Livio Bianchi IFIPAE 2021 PD 25/11/2021

10

27

Ξ coming from s-fragmentation better describe measured spectral shape (even VS multiplicity)*

(except CR, which anyway contributes at highest multiplicity)

No need for final state?

Collective flow

According to hydro picture, the QGP is expected to develop:

- Radial flow
 - Common expansion velocity of partons
 - Translates into p_{T} spectra modification
- Anisotropic flow
 - Initial spatial anisotropy \rightarrow final momentum anisotropy
 - Measured through Fourier expansion coefficients of the $p_{\rm T}$ distribution

Medium properties affect the values of flow coefficients: low bulk and shear viscosities \rightarrow large radial and anisotropic flows

$$E\frac{d^3N}{dp^3} \approx \frac{1}{2\pi} \frac{d^2N}{p_T dp_T d\eta} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)] \right]$$

10⁶

Spectral modification from large ...

13

27

Spectra get harder going to central A-A collisions

p + p

- Can be seen in «baryon/meson» ratios (e.g. $\Lambda/K_{\rm S}^0$) •
- Interpreted as radial flow: higher mass \rightarrow higher p_{T} boost
- Well reproduced by hydro calculations at $low-p_T$

... to small systems

14

27

Λ/K_S^0 enhancement present in all collision systems at the LHC:

- The larger the colliding system, the larger the effect
- Smooth evolution with multiplicity when selecting specific p_T intervals
- Radial flow in small systems?

Application of hydro far from equilibrium under study

PYTHIA with CR can describe the low- $p_{\rm T}$ trend observed in pp

Spectral modification in- and out-of-jets

_____ 27

15

Spectra modification mostly happening outside the jet!

In two-component models this would be linked to the presence of radial flow in core (UE?) and of vacuum hadronization in jets

v_n ≠ 0 observed at RHIC and LHC.
More important in semi-peripheral collisions (large eccentricity)

Hydrodynamic models reproduce v_n at low- p_T in all centralities by means of an "almost" perfect fluid: $\eta/s=0.2$

Anisotropic flow and hydro expectations

v_n ≠ 0 observed at RHIC and LHC.
More important in semi-peripheral collisions (large eccentricity)

Hydrodynamic models reproduce v_n at low- p_T in all centralities by means of an "almost" perfect fluid: $\eta/s=0.2$

The ϕ meson groups to protons at low- p_T (same mass) and to mesons at intermediate- p_T (same n_q)

$v_2 > v_3 > v_4 \neq 0$ in all colliding systems:

- $v_2{4}_{3-sub}=v_2{6}$ in pp: small influence of non-flow
- v₂ higher in A-A (eccentricity evolution), almost flat in pp and p-Pb
- v₃ & v₄ similar across systems (larger sensitivity to parton density anisotropy)

No model can quantitatively describe the data over the full multiplicity range

... but hydro far from equilibrium approaching from the right And Pythia + shoving approaching from the left..!

Livio Bianchi

IFIPAE 2021

27

- Large colliding systems:
 - Statistical hadron production
 - Viscous hydro
 - Two-component models successful (large dominance of core)
 - Microscopic models (e.g. Pythia Angantyr) in the game
- Small colliding systems:
 - Microscopic models are improving hadrochemistry description (ropes) and achieve non-zero v2 (shoving)
 ... but even without final state..!
 - Two component models ok for hadrochemistry (interplay between core and corona) and basic features of hydro-like phenomena (e.g. radial flow)
 - Hydro far from equilibrium (previous talk) in the game

- Large colliding systems:
 - Statistical hadron production
 - Viscous hydro
 - Two-component models successful (large dominance of core)
 - Microscopic models (e.g. Pythia Angantyr) in the game
- Small colliding systems:
 - Microscopic models are improving hadrochemistry description (ropes) and achieve non-zero v2 (shoving)
 ... but even without final state..!
 - Two component models ok for hadrochemistry (interplay between core and corona) and basic features of hydro-like phenomena (e.g. radial flow)
 - Hydro far from equilibrium (previous talk) in the game

CHOOSE YOUR WAY!

Need to find <u>FEATURES</u> in the data, cannot play at tuning models ourselves!

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

•••

- DIFFERENT TIMESCALES INVOLVED Large colliding systems: Statistical hadron production Viscous hydro ٠ Two-component models successful (large dominance of core) WHAT'S THE ROLE OF HF DECAYS ON STRANGENESS ENHANCEMENT? Microscopic models (e.g. Pythia Angantyr) in the game ٠ CAN WE DISENTANGLE INITIAL FROM FINAL STATE EFFECTES? Small colliding systems: HOW IS MULTIPLICITY GENERATED? Microscopic models are improving hadrochemistry description (ropes) and achieve non-zero v2 (shoving) ... but even without final state..! Two component models ok for hadrochemistry (interplay between core and corona) and basic features of hydro-like CAN WE SEPARATE HARD AND SOFT SCALES? phenomena (e.g. radial flow)
 - Hydro far from equilibrium (previous talk) in the game

27

Topological classification of pp events, identifying:

- Toward region (triggering jet) + Away region (recoiling jet)
- Transverse region (Underlying Event UE)

The jet direction is the direction of the highest- $p_{\rm T}$ hadron ($p_{\rm T}^{\rm leading}$ > X GeV/c)

Topological classification of pp events, identifying:

- Toward region (triggering jet) + Away region (recoiling jet)
- Transverse region (Underlying Event UE)

The jet direction is the direction of the highest- $p_{\rm T}$ hadron ($p_{\rm T}^{\rm leading}$ > X GeV/c)

And then one can:

 Select "isotropic" and "pencil-like" events (Spherocity)

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

 Measure spectra in "toward", "transverse", "away" (in-/out-of-jet)

• Express enhancement wrt UE multiplicity (R_{T})

Event topology: in- and out-of-jet

Livio Bianchi IFIPAE 2021 PD 25/11/2021

Event topology: in- and out-of-jet

In events with a leading particle with $p_T > 3 \text{ GeV}/c$ multi-strange hadrons are mostly produced outside the jet (soft part of the event, collectivity?) 27

UE

reconstructed jet productions, etc.

27

22

statistical hadronization)

 $0 \rightarrow \text{ee-like}$

 $\infty \rightarrow \mathsf{Pb}\text{-}\mathsf{Pb}\text{-}\mathsf{like}$

L. Bianchi, LHCP2020

Initial VS final state

23

27

Initial VS final state

23

27

F. Ercolessi, SQM 2021

F. Ercolessi, SQM 2021

Initial VS final state

Forward and mid-rapidity activities are causally disconnected right after t₀

If initial state effects play an important role on strangeness production, for a given multiplicity there should be modulation with effective energy

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

Initial VS final state

Livio Bianchi IFIPAE 2021 PD 25/11/2021

23

27

Pre-Equilibrium Phase (< τ₀)

Forward and mid-rapidity activities are causally disconnected right after t_o

If initial state effects play an important role on strangeness production, for a given multiplicity there should be modulation with effective energy

F. Ercolessi, SQM 2021

Multiplicity distribution of p, ϕ , KOS, Λ , Ξ , Ω per event VS charged particle multiplicity

Multiple strange hadrons per event can add important constraints to the models

- Trivial Poisson behavior would hint at statistical production
- Deviations could indicate relevant correlated production

- Observations on soft particle production in large systems require some sort of collectivity to be interpreted
 - The nature of this collectivity is debated, with explanations differing for microscopic description and timescale differences
- Small colliding systems are powerful tools to help understanding collectivity.. and yet they introduce more complication
 - Final state effects are often required to describe observations VS multiplicity
 - ... but not always
- We can easily imagine that in 5 years from now models differing very much for underlying physics will all describe published data → Need to explore new features
- Many new investigations which aim at
 - Fixing timescales
 - Fixing hard scales and looking at soft production
 - Disentangle initial/final state
 - Explore multiple PID production

Livio Bianchi

IFIPAE 2021

PD 25/11/2021

27

Striking similarities between light and heavy flavors in small systems

Intriguing observation:

- Hydro for charm?
- Coalescence at intermediate p_T with same net effect for light and heavy flavors?
- Color Reconnection in the final state?

Need to extend Λ_c/D_0 at lower p_T and with larger statistics