-Cosmological Bounds on long range forces in the dark sector

Emanuele Castorina University of Milan

w/M. Archidiacono, D. Redigolo and E. Salvioni

BAM, 10/09/21

Infra-Red effects in galaxy clustering

(a.k.a. The galaxy power spectrum in General Relativity)

Emanuele Castorina University of Milan

w/ Enea di Dio , 2106.08857

BAM, 10/09/21

Outline

- Why we care about Primordial Non Gaussianities (PNG)
- Signatures of PNG in galaxy clustering
- The IR limit of the power spectrum

The consistency relation

Higher point functions (PNG) as a probe of the dynamics of inflation.

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3) \rangle = (2\pi)^3 \delta_D(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_\zeta(k_1, k_2, k_3)$$

Local non Gaussianities are zero in single field inflation. A non perturbative result independent of the dynamics!

$$\lim_{k_1 \to 0} B_{\zeta}(k_1, k_2, k_3) = (n_s - 1) P_{\zeta}(k_1) P_{\zeta}(k_3)$$

Maldacena Creminelli&Zaldarriaga

Detection of local PNG will rule out single field inflation. Non detection, constrains multi-field models.

 \mathbf{k}_3

 \mathbf{k}_1

Detection of local PNG will rule out single field inflation. Non detection, constrains multi-field models.

 \mathbf{k}_3

 \mathbf{k}_1

Detection of local PNG will rule out single field inflation. Non detection, constrains multi-field models.

-0.00016

$$\zeta = \zeta_g + \frac{3}{5} f_{NL}^{\text{loc}}(\zeta_g^2 - \left\langle \zeta_g^2 \right\rangle) \quad \longrightarrow \quad$$

 $f_{
m NL}^{
m loc} = -0.8\pm5$

$$\sigma_{f_{\rm NL}^{\rm loc}} \lesssim 1$$

0.00016

Credit : B. Wandelt

 \mathbf{k}_3

 \mathbf{k}_2

 \mathbf{k}_1

After T_CMB, by far the most accurately determined parameter in cosmology

$$\zeta = \zeta_g + \frac{3}{5} f_{NL}^{\text{loc}}(\zeta_g^2 - \langle \zeta_g^2 \rangle) \qquad \qquad \zeta_g \simeq 10^{-5} \qquad \qquad f_{NL}^{\text{loc}} = -0.8 \pm 5$$

It implies local PNG are measured with 0.05% precision.

LSS is still far

But could beat CMB in the near future. How ?

Galaxy bias

Proposition: I do not understand anything about galaxy formation ('UV' physics). But I can do EFT!

$$\delta_g(L;x,z) \equiv \frac{n_g(L;x,z) - \bar{n}_g(L)}{\bar{n}_g(M)} = \sum_{\mathcal{O}} b_{\mathcal{O}}(L;z)\mathcal{O}(x,z)$$

Overdense regions host more galaxies than the mean. Opposite for underdensities.

Galaxy bias is defined as the response of the galaxy number density to the presence of long-wavelength modes

In a perfectly Gaussian Universe the Equivalence Principle and symmetries tells us that

$$\delta_g \simeq b_\phi \phi + b_{\nabla \phi} \mathbf{x} \cdot \nabla \phi + b_1 \delta_m + \dots$$

Galaxy bias

Proposition: I do not understand anything about galaxy formation ('UV' physics). But I can do EFT!

$$\delta_g(L;x,z) \equiv \frac{n_g(L;x,z) - \bar{n}_g(L)}{\bar{n}_g(M)} = \sum_{\mathcal{O}} b_{\mathcal{O}}(L;z)\mathcal{O}(x,z)$$

Overdense regions host more galaxies than the mean. Opposite for underdensities.

Galaxy bias is defined as the response of the galaxy number density to the presence of long-wavelength modes

In a perfectly Gaussian Universe the Equivalence Principle and symmetries tells us that

Signatures of Primordial Non-Gaussianities

Luckily enough PNG show up in the galaxy power spectrum Dalal+08, Slosar+08

Split the Gaussian piece of the gravitational potential in long and short modes

$$\phi = \phi_l + \phi_s$$

$$\Phi(\mathbf{x}) = \phi(\mathbf{x}) + f_{NL}(\phi^2(\mathbf{x}) - \langle \phi^2(\mathbf{x}) \rangle)$$

= $\phi_l + f_{NL}\phi_l^2 + (1 + 2f_{NL}\phi_l)\phi_s + f_{NL}\phi_s^2 + \text{const.}$

When I integrate out the short modes I have to introduce a term proportional to the gravitational potential

$$\delta_g \subset f_{\rm NL} b_\phi \Phi$$

Signatures of Primordial Non-Gaussianities

$$\Phi = \alpha(k)\delta(k) , \ \alpha(k) = \frac{3H^2\Omega_m}{2k^2T(k)D(z)}$$

$$\alpha(k) \propto k^{-2}$$

PART II:

The large scale limit of the galaxy power spectrum

An analogy: the CMB

An analogy: the CMB

Now for galaxies

 $\Delta_g = b_1 \delta_g + \text{lensing} + \# \text{ of terms with } \Phi + \# \text{ of terms with } \int \dot{\Phi} + \# \text{ of terms with } \nabla \Phi$

Now for galaxies

$$\Delta_{g} = b_{1}\delta_{g} + \text{lensing} + \# \text{ of terms with } \Phi + \# \text{ of terms with } \int \dot{\Phi}$$

$$+ \# \text{ of terms with } \nabla \Phi$$

$$\left(\frac{\mathcal{H}}{k}\right)^{2} \partial_{i}\partial_{j}\Phi \qquad \Delta x^{i} = n_{s}^{i}\delta\chi + \delta x^{i}$$

$$x_{s}^{i}$$

'Projection' effects proportional to the gravitational potential can be confused with local PNG.

How to compute the whole thing ?

 $\chi_{
m r}$

 $\chi_{
m s}$

Many of the other GR terms are either IR divergent or IR sensitive

$$\langle \Delta(\mathbf{s})_1 | \Delta(\mathbf{s}_2) \rangle \supset \langle \Phi(\mathbf{s}_1) \Phi(\mathbf{s}_2) \rangle \sim \int \frac{\mathrm{d}q}{2\pi^2} q^{-2} P_m(q) j_0(q|\mathbf{s}_2 - \mathbf{s}_1|)$$

The divergence comes from the variance (contact term), $q \rightarrow 0$.

$$\begin{aligned} \xi^{\mathrm{div}}(s,s_{1},\mu) &\equiv \sum_{\mathcal{OO'}} \xi^{\mathrm{div}}_{\mathcal{OO'}}(s,s_{1},\mu) \\ \xi^{\mathrm{div}}(s,s_{1},\mu) &= \sum_{\mathcal{OO'}} \xi^{\mathrm{div}}_{\mathcal{OO'}}(s,s_{1},\mu) = \sum_{\mathcal{OO'}} \tilde{\xi}^{\mathrm{div}}_{\mathcal{OO'}} + \sum_{\mathcal{OO'}} (\sigma^{2})^{\mathrm{div}}_{\mathcal{OO'}} \end{aligned}$$

Many of the other GR terms are either IR divergent or IR sensitive

$$\langle \Delta(\mathbf{s})_1 | \Delta(\mathbf{s}_2) \rangle \supset \langle \Phi(\mathbf{s}_1) \Phi(\mathbf{s}_2) \rangle \sim \int \frac{\mathrm{d}q}{2\pi^2} q^{-2} P_m(q) j_0(q|\mathbf{s}_2 - \mathbf{s}_1|)$$

The divergence comes from the variance (contact term), $q \rightarrow 0$.

It turns out all IR divegences cancel among themselves in the sum

$$\begin{aligned} \xi^{\mathrm{div}}(s,s_{1},\mu) &\equiv \sum_{\mathcal{OO'}} \xi^{\mathrm{div}}_{\mathcal{OO'}}(s,s_{1},\mu) \\ \xi^{\mathrm{div}}\left(s,s_{1},\mu\right) &= \sum_{\mathcal{OO'}} \xi^{\mathrm{div}}_{\mathcal{OO'}}(s,s_{1},\mu) = \boxed{\sum_{\mathcal{OO'}} \tilde{\xi}^{\mathrm{div}}_{\mathcal{OO'}}} + \sum_{\mathcal{OO'}} (\sigma^{2})^{\mathrm{div}}_{\mathcal{OO'}} \\ &\sum_{\mathcal{OO'}} (\sigma^{2})^{\mathrm{div}}_{\mathcal{OO'}} = 0 \end{aligned}$$
 All terms are important, including ones at observer positions

Cancellations like this one happen all the time. Can't be by chance !

- In QFT, Weinberg soft theorems, IR-div in QED etc...
- In Cosmology, very large or infinite terms cancel exactly in:
 - Loops in SPT, e.g. P22+P13 at 1-loop, 2-loop is divergent
 - Post-Born correction to lensing/shear observables
 - Now, GR/projection corrections to clustering

Cancellations like this one happen all the time. Can't be by chance !

- In QFT, Weinberg soft theorems, IR-div in QED etc...
- In Cosmology, very large or infinite terms cancel exactly in:
 - Loops in SPT, e.g. P22+P13 at 1-loop, 2-loop is divergent
 - Post-Born correction to lensing/shear observables
 - Now, GR/projection corrections to clustering

Weinberg adiabatic mode, consistency relations

This is nothing else than the mathematical formulation of the elevator argument

Residual diff-invariance allows under certain conditions to absorb long-wavelength gravitational potential in a change of coordinates

Weinberg04, Kheagias&Riotto13, Peloso&Pietroni13, Creminelli+13

This is nothing else than the mathematical formulation of the elevator argument

This is nothing else than the mathematical formulation of the elevator argument

$$\sum_{\mathcal{OO'}} (\sigma^2)_{\mathcal{OO'}}^{\mathrm{div}} = 0 \iff \Phi(k,\tau) + \frac{\mathcal{H}(\tau)}{k} v(k,\tau) = \text{constant} \quad \text{for} \quad k \to 0$$

This is equivalent to the conservation of the comoving curvature perturbations outside the horizon.

This is the case for :

- Adiabatic initial conditions
- Absence of large scale anisotropic stresses
- Absence of local PNG
- GR is the only long range force

They all need to be valid for the cancellation. Same for Maldacena's CC.

This is nothing else than the mathematical formulation of the elevator argument

$$\sum_{\mathcal{OO'}} (\sigma^2)_{\mathcal{OO'}}^{\mathrm{div}} = 0 \iff \Phi(k,\tau) + \frac{\mathcal{H}(\tau)}{k} v(k,\tau) = \text{constant} \quad \text{for} \quad k \to 0$$

This is equivalent to the conservation of the comoving curvature perturbations outside the horizon.

This is the case for :

- Adiabatic initial conditions
- Absence of large scale anisotropic stresses
- Absence of local PNG
- GR is the only long range force

They all need to be valid for the cancellation.

Aficionados' box

All other IR sensitivities are removed

We disagree with Grimm+20, their P(k) is not the observed one

Away from $k \rightarrow 0$, still go as k^{-4}

The galaxy power spectrum in General Relativity

Doppler dominates at low-z, lensing at high-z. All the rest is negligible.

Window function much more important than projection effects.

Summary

We can compute the full GR power spectrum including all GR effects, arbitrary window functions, and other observational effects.

- We now understand why flat-sky limit works
- Figured out the IR safe expressions for the observables. Relation to adiabatic modes and LSS consistency relations.
- Projection effects are not very important, few % at most.

What about local PNG ? Are they affected by GR terms ?

- Quantitative statements await computation of the covariance in GR

Thank you !