

Reconstruction of baryonic acoustic oscillations in the SDSS-DR12 Combined sample

In collaboration with: Carlo Schimd (LAM), Sabino Matarrese (Univ. of Padova), Enzo Branchini (Univ. Roma Tre)

High-precision cosmology: spectroscopic surveys

Goal: measuring cosmological parameters with <u>sub-percent precision</u> Strategy: Large surveyed volume, >10⁶ tracers, precise redshifts

SDSS-DR12 (2019)

Euclid (2023?)

Tracers: 3.5x10⁷ Area: 1.5x10⁴deg² 0.7 < z < 1.85 Tracers: 3x10⁵ Area: 10⁴deg² 0.15 < z < 0.7

DESI (2019-on going)

Tracers: 3x10⁷ Area: 1.x10³deg² 0. < z < 1.6

Warning: high-precision demands an accurate modelling of the clustering signal

Galaxy clustering: Baryon acoustic oscillations

Linear theory

BAO feature: Isotropic ring Sharp contours (peak in the monopole) Intrinsic size of the wavefront: pre-recombination expansion history, known from CMB (Planck, 2018) Observed size of the wavefront $(\Delta z, \Theta)$: post-recombination expansion history $(H(z), D_A(z))$ $s_{\parallel}^{\text{f}} = c/H(z)\Delta(z), \ s_{\perp}^{\text{f}} = (1 + z)D_A\Theta$ Constraining cosmology via comparison $s_{\parallel}^{\text{f}} = \alpha_{\parallel}s_{\parallel}^{\text{t}}, \ \alpha_{\parallel} \equiv H^{\text{t}}(z)/H^{\text{f}}(z)$

$$s_{\perp}^{\rm f} = \alpha_{\perp} s_{\parallel}^{\rm t}$$
, $\alpha_{\perp} \equiv D_{\rm A}^{\rm f}(z) / D_{\rm A}^{\rm t}(z)$

Late-time clustering

Non-linear evolution: matter overdensities departs from original position

- Redshift-Space (observations): Doppler shift due to neglected peculiar velocities
 - ---- Loss of isotropy
 - small-scales (<10 Mpc/h) power enhanced along S_{\parallel} (Fingers of God)
 - large-scales (>30 Mpc/h) power enhanced along s_{\perp} (Kaiser Distortions)

The BAO scale measurement is degraded

Pre-reconstruction 2pt correlation function (SDSS-DR12 mocks)

(Sarpa et al 2021, arXiv:2010.10456)

400 mocks, known cosmology, reproducing north galactic cap

Fitting single mocks pre-reconstruction

Fitting range: [50 ,150] Mpc/h)~linear

Non-linear Model: (13 parameters)

- Non-linear evolution: exponential dumping
- RSD: Kaiser (linear) + Lorenzian streaming (non-linear)
- Broad band

Results:

Degenerate fitting parameters

Need for a solution!

Parameters correlation matrix 2D distribution of dilation parameters

(Sarpa et al 2021, arXiv:2010.10456)

- Bias estimation of acoustic scale $|\langle \alpha_{\perp,\parallel} \rangle 1| > 0$
- · Large uncertainty on α_{\parallel}

Reconstruction

(Eisenstein et al., 2007)

Idea: Improve BAO measurement by displacing the observed mass distribution backwards-in-time 2pt correlation function Real space 0.002 Linear theory 0.001 Reversing Pre-reconstruction ÷ non-linear dumping 0 Post-reconstruction -0.001 50 100 150 200 r (h⁻¹ Mpc) Eisenstein et al., 2007b) Reconstructed 200 Redshift-space Real-space 175 100 200 150 175 175 100 150 150 125 50 125 125 100 100 100 \mathbb{S}_{\parallel} 75 75 **Removing RSD** 75 50 50 50 25 25 -50 -100 25 -25 0 -100 -50100 r_{\perp}^{0} 50 s_{1}^{0} -100-25 (Padmanabhan et al., 2012) -50 -100 -50 50 100 0 S

The extended Fast Action Minimisation method (eFAM)

Based on Least action Principle (Peebles, 1989 & Nusser & Branchini 2000)

Idea: reconstruct the past-trajectories of the mass tracers by minimising the action of the system (**fully non-linear**)

- Mixed boundary conditions: $\mathbf{X}_{i,0}$
 - observed positions/redshifts
 - vanishing initial peculiar velocities
- Action:

$$S = \int_{t_i}^{t_0} dt \sum_{i=1}^N m_i \left\{ \frac{1}{2} a^2 \dot{\mathbf{x}}_i^2 - \left[\frac{-G}{2a} \sum_{j=1, j \neq i}^N \frac{m_j}{|\mathbf{x}_i - \mathbf{x}_j|} - \frac{2}{3} G \pi \rho_b a^2 \mathbf{x}_i^2 \right] \right\}$$

Polynomials

- Minimisation:
 - polynomial expansion of trajectories $\mathbf{x}_{i,0} + \sum \mathbf{C}_{i,n}q_n(t)$
 - determine the set of coefficient $\{\mathbf{C}_{i,n}q_n(t)\}$

that stationaries the action

Reconstructed real-space 2pt correlation function, high redshift (mocks)

(Sarpa et al 2021, arXiv:2010.10456)

400 mocks, known cosmology, reproducing north galactic cap

wedges **Multipoles** 755050 $s^2 \xi_{\perp,\parallel}(s) \; (\mathrm{Mpc/h})^2$ $s^{2}\xi_{0,2}(s) \; ({
m Mpc/h})^{2}$ 250 -50-25 -50-100 $s^2 \xi_0$ -75 $s^2 \xi_2$ -150-100180 200 160 40 60 80 100 120 140 40 60 80 120 140160 180 200100 $s \,({\rm Mpc/h})$ s (Mpc/h)

- Sharper peak
- Wedges ~ superimposed
- ~ vanishing quadrupole Noise at high scale due to border effects

Fitting the mean wedges averaged over the mocks, *Post-reconstruction at high redshift*

sample	$lpha_{ot}$	$lpha_{\parallel}$	$\Sigma_{\perp}(h^{-1}\mathrm{Mpc})$	$\Sigma_{\parallel}(h^{-1}\mathrm{Mpc})$	f	$\Sigma_{\rm s}(h^{-1}{\rm Mpc})$
Obs	0.997 ± 0.003	1.011 ± 0.007	7.37 ± 0.45	10.20 ± 1.82	0.51 ± 0.13	4.43 ± 1.83
RecZ	0.997 ± 0.003	1.011 ± 0.006	7.79 ± 0.36	9.12 ± 0.68	0.07 ± 0.06	1.09 ± 1.18
RecL	0.997 ± 0.002	1.010 ± 0.004	5.21 ± 0.39	6.93 ± 0.53	0.06 ± 0.05	1.02 ± 0.88

Fitting range: [50,150] Mpc/h

- Better constraints on $\alpha_{\parallel,\perp}$
- Lower $\Sigma_{\parallel,\perp}$
- NO Degeneracy
- RSD parameters compatibles with zero

We can use the real-space template from 13 to 11 parameters

Correlation matrix of fitting parameters

Fitting single mocks: Pre vs Post-reconstruction

- Reduced bias in $\langle \alpha_{\perp,\parallel} \rangle$ estimates (golden star)
- Reduced uncertainty for $\langle \alpha_{\perp,\parallel} \rangle$

Fitting SDSS-DR12 data: Pre vs Post reconstruction

Fitting range: [50,150] Mpc/h

(Sarpa et al 2021, arXiv:2010.10456) wedges Significance 150**Pre-rec** 2.1σ $s^2 \xi_{\perp,\parallel}(s) \; (\mathrm{Mpc/h})^2$ 10050 $s^2 \xi_\perp$ -500.8 0.9 $a_{\parallel}^{1.0}$ 1.1 $s^2 \xi_{\parallel}$ 1.2 60 **Post-rec** 4.4σ $s^2 \xi_{\perp,\parallel}(s) \; (\mathrm{Mpc/h})^2$ 20 $2\log \mathcal{L}/dof$ $s^2 \xi_\perp$ 07 0.8 0.9 -20 $a_{\parallel}^{1.0}$ 1.1 1.2 120140 160 40 60 80 100 20 $s \,({\rm Mpc/h})$

Post-reconstruction:

- No RSD
- Sharper peak
- Gained significance

(D_A,H) Pre vs Post reconstruction

Fitting range: [50,150] Mpc/h

(Sarpa et al 2021, arXiv:2010.10456)

- σ_{H}/H from 3.5% to 2.5%
- $\sigma_{D_{\rm A}}/D_{\rm A}$ from 5% to 3.6%
- Better agreement w/
 - fiducial cosmology
 - Ross17

Table 4. Fit results from the SDSS-DR12 Combined Sample.

sample	$D_{\mathrm{A}}(0.38)(r_{\mathrm{s}}^{\mathrm{fid}}/r_{\mathrm{s}})$ (Mpc)	$H(0.38)(r_{\rm s}/r_{\rm s}^{\rm fid})$ (km s ⁻¹ Mpc ⁻¹)			
Obs	1129 ± 40	82 ± 4			
RecL	1090 ± 29	83 ± 3			

Summary and conclusions

- Reconstruction techniques are useful tools to extract additional informations from observations, being vital to improve BAO measurements.
- **eFAM can help.** Applied on SDSS-DR12 eFAM yields:
 - 2x significance of BAO detection
 - 2x precision on cosmological parameters
 - robust estimation of the cosmological parameters with respect to the fitting range
 - Towards a unique reconstruction: same reconstruction for many purposes

Voids reconstruction on SDSS-DR12

(Sarpa, Degni, Aubert, Pisani, Hawken, Branchini in prep.)

Idea: Improve AP test modelling RSD

2pt galaxy-voids cross-correlation function

(plot by Giulia Degni)

Exploring the evolution of the cosmic web

Thank you for the attention ...

Fitting single mocks: Pre vs Post-reconstruction

Varying the fitting range									
fitting range	sample	$\langle \alpha_{\perp} \rangle - 1$	$S_{\langle lpha_{\perp} angle}$	$\langle \sigma_{lpha_{ot}} angle$	$S_{\langle \sigma_{lpha_{\perp}} angle}$	$\langle \alpha_{\parallel} \rangle - 1$	$S_{\langle lpha_{\parallel}} angle$	$\langle \sigma_{lpha_{\parallel}} angle$	$S_{\langle \sigma_{lpha_{\parallel}} angle}$
$[50, 150]h^{-1}$ Mpc	Obs	0.002	0.036	0.031	+0.017 -0.004	-0.017	0.081	0.053	+0.067 -0.005
	RecL	-0.002	0.024	0.024	+0.013 -0.002	-0.010	0.056	0.049	+0.032 -0.006
$[40, 150]h^{-1}$ Mpc	Obs	0.002	0.035	0.032	+0.024 -0.004	-0.026	0.088	0.054	+0.061 -0.004
	RecL	-0.002	0.025	0.027	+0.007 -0.004	-0.011	0.051	0.043	+0.030 -0.004
$[25, 150]h^{-1}$ Mpc	Obs	0.004	0.036	0.033	+0.017 -0.004	-0.032	0.091	0.059	+0.065 -0.007
	RecL	0.000	0.023	0.026	+0.013 -0.003	-0.010	0.053	0.048	+0.030 -0.004
						1			

- Pre-reconstruction (obs):
 - increasing bias in $\langle \alpha_{\parallel} \rangle$ with decreasing s_{min}
 - increasing $S_{\langle \alpha_{\parallel} \rangle}$ with decreasing smin
- Post-reconstruction (RecL)
 - stable measurements at all scales

We can extend the fitting range

(Sarpa et al 2020, arXiv:2010.10456)

Survey geometry and masked regions (Sarpa et al., 2021)

- Assumption: observed galaxies as an isolated system
 - non-spherical symmetry
 - → artificial *large-scale* bulk-flow
 - masked regions
- Solution: Newton's shell theorem
 - split internal and external contributions:
 - Compute ϕ_{ext} from random distribution filling the survey

assuming
$$\phi_{tot}^{R}(\mathbf{x}) = 0$$
 and $\phi_{ext}^{R}(\mathbf{x}) = \phi_{ext}^{g}(\mathbf{x})$

$$\rightarrow \phi_{\text{tot}}^{\text{g}}(\mathbf{x}) = \phi_{\text{int}}^{\text{g}}(\mathbf{x}) - \phi_{\text{int}}^{\text{R}}(\mathbf{x})$$

Note: equivalent to embed the survey in an larger random distribution but computational more efficient

Galaxy bias

(Sarpa et al., 2021)

- Standard FAM (Branchini et al., 2002)
 - no biasing scheme: total mass is split among visible objects
- Fiducial biasing scheme: peak-background split
 - linear bias relation: $\delta = \delta_{\rm g}/b$
 - assumption: bi-modal dark matter distribution,
 clustered + smooth uniform background

$$\rho_{\text{tot}}(\mathbf{x}) = \rho'_{\text{g}}(\mathbf{x}) + \bar{\rho}_{\text{DM}} \sum_{\text{g}} \left[1 - \delta^{\text{D}}(\mathbf{x} - \mathbf{x}_{\text{g}}) \right]$$

- new masses

$$\rho_{\rm g}'(\mathbf{x}) = \left(\frac{\delta_{\rm g}(\mathbf{x})}{b} + 1\right) \frac{\Omega_{\rm m,0} 3H^2}{8\pi G}$$

- smooth background contribution modelled as an extra tidal fields

Biasing scheme $\rho_{DM}(x)$ $\bar{\rho}_{DM}(x)$ $\bar{\rho}_{DM}$ $\bar{\rho}_{V}(x)$ \bar