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Dark matter in the Universe

« The astrophysical and cosmological observations have provided compelling

evidences of the existence of dark matter (DM).

Observations
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Cold DM (~26%)
Qchz = 0.11933 + 0.00091

Baryons (~5%)
Qph? = 0.02242 + 0.00014

Planck 2018 Dark energy (~69%)
[1807.06209] Q, = 0.6889 + 0.0056




Axion dark matter

e Strong CP problem: the QCD Lagrangian can contain a CP violating term
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e Current limit from neutron EDM: 0 < 1010




Axion dark matter

e Strong CP problem: the QCD Lagrangian can contain a CP violating term
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® Current limit from neutron EDM: H < 10—10

® Introduce a global U(1) PQ symmetry, promote g to a dynamical quantity

Instead of a constant parameter.

® The goldstone boson associated with U(1) PQ is called axion, with is a

good DM candidate.



Axion-photon conversion

The coupling between axion and electromagnetic sector:
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Axion-photon conversion

The coupling between axion and electromagnetic sector:
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Axion-photon conversion in the external magnetic field

° AXion heliOSCOpe [170502290, 14013233 ] non-relativistic

dark matter

® |ight shining through awall [1004.1313, 1302.5647 ---]

® Neutron stars [0711.1264, 1804.03145, 1803.08230,
2008.01877, 2011.05378, 2004.06486 -]

® Magnetic white dwarf stars [2101.02585]

From Benjamin Safdi’s talk



Single NS/MWD results

e The axion-photon mixing equations
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Single NS/MWD results

e The axion-photon mixing equations
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Plasma model are different! JW Wang, XJ Bi, RM Yao, PF Yin, arXiv:2101.02585, PRD



The properties of Omega Centauri

Why Omega Centauri ?
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Why Omega Centauri ?
e The largest globular cluster in the Milky Way, and is suggested to be the

remnant core of a dwarf galaxy;

®* Amounts of CSs, larger DM density, and smaller velocity dispersion.




The properties of Omega Centauri

Why Omega Centauri ?
e The largest globular cluster in the Milky Way, and is suggested to be the

remnant core of a dwarf galaxy;

®* Amounts of CSs, larger DM density, and smaller velocity dispersion.
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The properties of Omega Centauri

Why Omega Centauri ?
e The largest globular cluster in the Milky Way, and is suggested to be the

remnant core of a dwarf galaxy;

®* Amounts of CSs, larger DM density, and smaller velocity dispersion.

e The DM profile: PNFW = Ps ry r Wit rs = 1.63 pc

The total DM mass is ~ 10° M

® The King model and position dependent MB distribution.
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The properties of Omega Centauri

Why Omega Centauri ?
e The largest globular cluster in the Milky Way, and is suggested to be the

remnant core of a dwarf galaxy;

®* Amounts of CSs, larger DM density, and smaller velocity dispersion.

e The DM profile: PNFW = Ps ry r Wit rs = 1.63 pc

The total DM mass is ~ 10° M

® The King model and position dependent MB distribution.

e N-body simulations of GCs by using CMC code [K. Kremer, etc, 2020]

12531 NSs and 102990 MWDs with B, > 0.1 MG




The properties of compact stars

e Dipole magnetic field configuration, set

neo = 1010 ¢cm ™3

and

T.o. = 10° K




The properties of compact stars

For WWDs, e distrbuion of M, and B, are deeived by using fhe cument availzble MINDs

¢ Dipole magnetic field configuration, Set |..wmss: s and|1cor = 10 K

e For MWDs, the distribution of M, and B, are derived by using the current available MWDs

data with linear interpolation, and Ry, is determined by EoS.
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e For NSs, Dipole magnetic field configuration, set | Mxs = 1.44Mq| and |Rns = 10.3 km].

e For NSs, the distribution of P, as, and B, are derived by the NS evolution models
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The properties of compact stars

For WWDs, e distrbuion of M, and B, are deeived by using fhe cument availzble MINDs

¢ Dipole magnetic field configuration, Set |..wmss: s and|1cor = 10 K

e For MWDs, the distribution of M, and B, are derived by using the current available MWDs

data with linear interpolation, and Ry, is determined by EoS.

e For NSs, Dipole magnetic field configuration, set | Mxs = 1.44Mq| and |Rns = 10.3 km].

e For NSs, the distribution of P, as, and B, are derived by the NS evolution models
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The sensitivity of SKA1 and LOFAR

Technical parameters of the SKA1 and LOFAR [13, 16]

Channel Range [GHz] Resolution [kHz] FoV [arcmin]

SKA1 LOW 0.05~0.35 1.0 327
Bl 0.35~1.05 3.9 109

B2 0.95~1.76 3.9 60

B3*| 1.65~3.05 9.7 42

SEALMIDI pie) 9805.18 9.7 42
Bba 4.6~8.5 9.7 12.5

B5b 8.3~15.3 9.7 6.7
LOFAR LBA 0.03~0.08 195 470.9
LOFAR HBA 0.11~0.24 195 94.8

e The minimal detectable flux density:

SEFD 2k
Sinin = ., SEFD=-—"0_
UE \/npol B Tobs Aeff/Tsys

® The total flux density from Omega Centauri:
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Result of pure NSs
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e The largest detectable axion mass:
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Pure MWDs results

f=m,/(2r) [MHZz]
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e The largest detectable axion mass: | m®* ~ 3.7 ueV

e The statistical fluctuation is quiet small (law of large numbers)



Combined results: NS+WMDs

f = m,/(2r) [MHz) f = m,/(2x) [MHz]
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e For NS model 1, the contribution of NS is dominant

® For NS model 2, the contribution of MWDs is relatively larger in the

region of m, < 2 peV



Summary

® Axion is one of the most compelling DM candidates, and can also

solve the strong CP problem in an elegant way;

® The axion-photon conversion provides a possible way to detect
the axion dark matter, especially around objects with strong

magnetic field;

® Compared with single CS, the Omega Centauri is a much more

effective target. The constrains on g,, can up to
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