Introduction	Method	Data & Analysis	Results	Conclusions	
00000	0000	000	000	00	

Euclid: constraining ensemble photometric redshift distributions with stacked spectroscopy

Università degli Studi di Milano - Dipartimento di Fisica

Marina S. Cagliari (marina.cagliari@unimi.it) Ben R. Granett

Barolo PRIN Meeting September 2021

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction ●0000	Method 0000	Data & Analysis 000	Results 000	Conclusions 00	

Objectives

- We built a machine implementation of the *ensemble photometric redshifts* method proposed by Padmanabhan et al. (2019).
- Redshift distributions are needed in cosmology to analyse photometric samples of galaxies:
 - to extract information from large-scale structure and galaxy clustering,
 - to make tomographic studies with weak lensing.

Figure credits: ESA

University of Milan - Physics Department

Marina S. Cagliari (marina.cagliari@unimi.it)

Introduction	Method	Data & Analysis	Results	Conclusions	
0●000	0000	000	000	00	

Correlation Function

- The galaxy two-point correlation function is used to study large-scale structures.
- The angular correlation function is related to the 3D correlation function through the redshift distribution.
- It has a power law form, ξ(s) ~ s^{-γ}, and a peak due to Baryon Acoustic Oscillations (BAO).

University of Milan - Physics Department

Marina S. Cagliari (marina.cagliari@unimi.it)

Introduction	Method	Data & Analysis	Results	Conclusions	
00●00	0000	000	000	00	

Redshift Measurements

- Redshifts can be measured either with spectroscopy or photometry.
- Photemtric measurements are deeper and faster than spectroscopic ones.
- Photometric redshifts is calibrated with spectroscopic redshift in order to measure redshift distributions.

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction	Method	Data & Analysis	Results	Conclusions	
000●0	0000	000	000	00	

Euclid

Credits: ESA/ATG medialab; NASA, ESA, CXC, Ma et al. and STScI

- Euclid is an upcoming ESA space mission, it will combine imaging and slitless spectroscopy surveys.
- Redshift distributions are used both in weak lensing analyses and BAO measurements.

Marina S. Cagliari (marina.cagliari@unimi.it)

Introduction	Method	Data & Analysis	Results	Conclusions	
0000●	0000	000	000	00	

Euclid data

Figure from Laureijs et al. (2011)

- It will obtain NIR photometry and a shallow spectrum for every galaxy.
- It will not be able to measure the spectroscopic redshift of every galaxy.

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	●000	000	000	00	

Ensemble photometric redshifts

• The ensemble photometric redshifts method aims to constrain the redshift distribution of a *photometrically-selected galaxy sample* (colour group) by using the *stacked spectrum* built from the average of many low signal-to-noise spectra.

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	0●00	000	000	00	

Stacked spectrum

• The stacked spectrum of a colour group is:

$$f_{ ext{stack}}^{ ext{obs}}(\lambda) = rac{1}{N_{ ext{gal}}} \sum_{i=1}^{N_{ ext{gal}}} rac{1}{ar{f}_i} f_i(\lambda) \,, \quad ext{where} \; f(\lambda) = a \; T(\lambda|z) \,.$$

• Modelling the galaxy SEDs with a finite set of parameters:

$$f_{ ext{stack}}^{ ext{model}}(\lambda) = \sum_{lpha=1}^{m{N}_{ ext{SED}}} \sum_{z=z_{ ext{min}}}^{z_{ ext{max}}} p_{lpha,z} T_{lpha,z}(\lambda) \, .$$

The redshift distribution is:

$$p_z \propto \sum_{lpha=1}^{N_{
m SED}} p_{lpha,z} \, .$$

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	oo●o	000	000	00	

Machine implementation

$$\begin{pmatrix} T_1^{z_1}(\lambda_1) T_2^{z_1}(\lambda_1) T_1^{z_2}(\lambda_1) T_2^{z_2}(\lambda_1) \\ T_1^{z_1}(\lambda_2) T_2^{z_1}(\lambda_2) T_1^{z_2}(\lambda_2) T_2^{z_2}(\lambda_2) \\ T_1^{z_1}(\lambda_3) T_2^{z_1}(\lambda_3) T_1^{z_2}(\lambda_3) T_2^{z_2}(\lambda_3) \end{pmatrix} \begin{pmatrix} p_1^{z_1} \\ p_2^{z_2} \\ p_1^{z_2} \\ p_2^{z_2} \end{pmatrix} = \begin{pmatrix} f_s(\lambda_1) \\ f_s(\lambda_2) \\ f_s(\lambda_3) \end{pmatrix}$$

- Operatively we build a template matrix, however the problem is under-constrained and do not have a unique solution.
- We want to find a minimum set of templates that fits the stacked spectrum → linear regression problem with non-negative constrain.

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	000●	000	000	00	

Method's performance

• We compare the BAO angular position computed with the real redshift distribution and the fitted one:

$$w(\vartheta) = \int \frac{\mathrm{d}\ell\,\ell}{2\pi} J_0(\ell\vartheta) \int \mathrm{d}r \frac{\left[p(z)\frac{\mathrm{d}z}{\mathrm{d}r}\right]^2}{r^2} P_{\mathrm{g}}\left(\frac{\ell+\frac{1}{2}}{r}, z|\Omega\right)\,.$$

• The method error is quantified by:

$$\left\langle \left| \frac{\Delta \vartheta_{\rm BAO}}{\vartheta_{\rm BAO}} \right| \right\rangle = \left\langle \left| \frac{\vartheta_{\rm BAO}^{\rm real} - \vartheta_{\rm BAO}^{\rm fit}}{\vartheta_{\rm BAO}^{\rm real}} \right| \right\rangle_{\rm colour\,groups}$$

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction 00000	Method 0000	Data & Analysis ●00	Results 000	Conclusions 00	

Euclid Flagship

- We base the synthetic photometric and spectroscopic data on the Euclid Flagship mock galaxy catalogue.
- We built three catalogues with different internal galaxy attenuation models:
 - non-attenuated: without galaxy attenuation,
 - fixed attenuation: galaxy attenuation is fixed and known,
 - *real* attenuation: galaxy attenuation is free and unknown.
- Each catalogue needs a specific template set in order to compute the redshift distributions.

Euclid: constraining ensemble photometric redshift distributions with stacked spectroscopy

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	0000	0●0	000	00	

Data & Errors

- Spectroscopy in the Euclid range (1.25 ÷ 1.85 μm), and photometry in the three Euclid NISP filters (YJH) and the six ones of the Vera C. Rubin observatory (ugrizy) are known.
- Observational error is generated with Gaussian extraction. Two different error models are assumed for photometry and slitless spectroscopy.

University of Milan - Physics Department

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	0000	00●	000	00	

Colour group division

- Self-organising maps (SOMs) are an unsupervised machine-learning algorithm, which projects high-dimensional data onto a lower-dimensional grid.
- We use a SOM to divide the galaxies by their colours. The cells of the SOM are the colour groups.

Red spots: $z_{
m mean} > 1 ~\wedge~ \sigma_z < 0.2$

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction 00000	Method 0000	Data & Analysis 000	Results ●00	Conclusions	

Analyses without spectroscopic noise

Non-attenuated catalogue Real attenuation catalogue 10 Real distribution Real distribution 3.5 NNI S NNI S LASSO LASSO 8 3.0 ElasticNet ElasticNet 2.5 6 (N) 2.0 · D(z)1.5 -4 1.0 2 . 0.5 0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 z z

University of Milan - Physics Department

Marina S. Cagliari (marina.cagliari@unimi.it)

Introduction 00000	Method 0000	Data & Analysis 000	Results 0●0	Conclusions	

Analyses with spectroscopic noise

Non-attenuated catalogue

Real attenuation catalogue

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction 00000	Method 0000	Data & Analysis 000	Results 00●	Conclusions 00	

Results

Analysis without spectroscopic noise						
NNLS LASSO ElasticNet						
non-attenuated	0.0069	0.0062	0.0053			
fixed	0.0086	0.0050	0.0040			
real	0.019	0.021	0.014			
Analysis	with spec	troscopic n	oise			
Analysis	with spec NNLS	troscopic n LASSO	oise ElasticNet			
Analysis non-attenuated	with spec NNLS 0.0073	troscopic n LASSO 0.0071	oise ElasticNet 0.0063			
Analysis non-attenuated fixed	with spec NNLS 0.0073 0.0099	etroscopic n LASSO 0.0071 0.0066	oise ElasticNet 0.0063 0.0057			

- Attenuation is the main limitation to the fit performance.
- Noise induces a 10% loss in the method precision introducing an additional degeneracy.

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	0000	000	000	●O	

Conclusions

- In ideal condition the method is able to reconstruct with great detail the redshift distributions.
- The accuracy of the redshift distribution estimation is *limited primarily by internal galaxy attenuation* and its modeling.
- We expect a further loss in precision when analysing real data.
- We hope to *improve the performance* by adding physical priors and optimizing the template set.

Introduction	Method	Data & Analysis	Results	Conclusions	
00000	0000	000	000	○●	

Thanks for your Attention!

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department

Introduction	Method	Data & Analysis	Results	Conclusions	Extras
00000	0000	000	000	00	•

Spectro-Photometry vs. Photrometry

Marina S. Cagliari (marina.cagliari@unimi.it)

University of Milan - Physics Department