

On Assessment of Luminosity and Power Challenges of Future Higgs/EW factories

Vladimir Shiltsev (Fermilab) *eeFACT'22* – 65th ICFA BD Workshop (INFN Frascati, Sep 12-15, 2022) 15 September 2022

Higgs factory summary table ... from Snowmass ITF report

- Main parameters of the submitted Higgs factory proposals.
- The cost range is for the single listed energy.
- The superscripts next to the name of the proposal in the first column indicate:
- (1) Facility is optimized for 2 IPs. Total peak luminosity for multiple IPs is given in parenthesis;
- (2) Energy calibration possible to 100 keV accuracy for MZ and 300 keV for MW;
- (3) Collisions with longitudinally polarized lepton beams have substantially higher

_							
	Proposal Name	CM energy	$\mathrm{Lum./IP}$	Years of	Years to	Construction	Est. operating
		nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
		[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
	$FCC-ee^{1,2}$	0.24	7.7 (28.9)	0-2	13-18	12-18	290
		(0.09-0.37)		1 I			
	$CEPC^{1,2}$	0.24	8.3 (16.6)	0-2	13-18	12-18	340
		(0.09-0.37)		i i			
	ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
	factory	(0.09-1)		P 1			 '
	CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
	factory	(0.09-1)		$\geq = = 2$		H 1	
	CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
	Copper Collider)	(0.25 - 0.55)		l u '	<u> </u>		
; [CERC ³ (Circular	0.24	78	5-10	19-24	12-30	90
	ERL Collider)	(0.09-0.6)					t !
	ReLiC ^{1,3} (Recycling	0.24	165(330)	5-10	$>\!25$	7-18	315
	Linear Collider)	(0.25-1)					
ſ	$ERLC^3$ (ERL	0.24	90	5-10	$>\!25$	12-18	250
	linear collider)	(0.25-0.5)					
ſ	XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
	$\gamma\gamma$ collider)	(0.125 - 0.14)					<u> '</u>
ſ	Muon Collider	0.13	0.01	> 10	19-24	4-7	200
	Higgs Factory ³						

NB: luminosity and power consumption values as provided by proponents

		Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
			nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
Fermilah			[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
		High Energy LeptoN	0.25	1.4	5-10	13-18	7-12	~ 110
	\lfloor /	(HELEN) e^+e^- colider	(0.09-1)					l
site-fillers		e^+e^- Circular Higgs	0.24	1.2	3-5	13-18	7-12	~ 200
		Factory at FNAL	(0.09-0.24)		<u>'' (</u>		│ ` ∠	

口 Fermilab

ITF Report – T.Roser, et al, <u>arXiv:2208.06030</u>

Power and Luminosity Concerns Common

- What are the power/energy consumption limits for future facilities -200 MW? 1 TWh/yr?
- Or primary concerns are electricity cost and CO2 footprint?
- Total(integrated) MW/TWh/yr of "per Higgs particle"?
- (so far muted) machine commissioning time and availability

• Q's depending on approach:

- Circular ee: used to be considered "well understood", but the Super-KEKB lumi progress shows that there are many "unknown unknowns" at the luminosity frontier
- Linear ee/yy: past experience of the SLC is not fully assuring, present machines (XFEL, LSLS-II) are not colliders – different specs; future LC P and L exhibited big variations recently
- Circular and linear ERL-based: how "real" are claimed benefits?
 What are the recirculation efficiency limits? Nowadays currents and powers are 3 order of magnitude off...

Limits on Luminosity

- General Equation
 - sheer beam power

$$L = f_0 n_b N^2 / 4\pi \sigma^2$$

$$P_b = f_0 n_b N \gamma mc^2$$

$$L \propto (\xi/\beta^*)(P_{SR}/2\pi R)(R^2/\gamma^3))$$

– LC power, BS, jitter

$$L \propto (P/E)(N_{\gamma}/\sigma_y)$$

– ERL lumi

$$L = L_{\text{ring or LC}} \cdot R_{\text{gain factor}}$$

Se Fermilab

Luminosity per Power

ITF Report – T.Roser, et al, <u>arXiv:2208.06030</u>

Remaining topic to be addressed by the accelerator community is evaluation milab of possible ranges in both luminosity and power consumption values.

"Ranges of Certainty"

Factor 1 - Power

- If the facility power P_{tot} is limited, what is beam/SR power P_b available?
- What is the range of certainty $x = P_p / P_{tot}$

Other factors:

- Circular ee: beam-beam / beta* how stretched are those? What can be done?
- Linear ee/yy: N_y/sigma_y how stretched are those? What can be done?
- Circular and linear ERL-based: is there good understanding of the gain due to energy recovery $R_{\text{gain factor}}$?

HEP Community Inquiry

- "Kind of a charge" (request) from the Snowmass: "...take a look at the luminosity and power consumption projections for various ee-Factories and provide "expert comparative evaluation" for them. Such "independent" evaluation would be very helpful."
- Outcomes of these discussions at the eeFACT'22 can (still) be captured in the *Snowmass Topical Group AF3 "Higgs/EW factories"* report:
- A.Faus-Golfe, G.Hoffstadter, Q.Qin, F.Zimmermann
- v.1 <u>https://arxiv.org/abs/2209.05827</u> → v.2

Back up slides

Proposals – Higgs/EW Physics

Higgs factory concepts (10)

Name	CM energy range
FCC-ee	<u>e+e-</u> , $\sqrt{s} = 0.09 - 0.37$ TeV
CEPC	e+e-, $\sqrt{s} = 0.09 - 0.37$ TeV
ILC (Higgs factory)	e+e-, $\sqrt{s} = 0.09 - 1$ TeV
CLIC (Higgs factory)	e+e-, √s = 0.09 – 1 TeV
CCC (Cool Copper Collider)	e+e-, $\sqrt{s} = 0.25 - 0.55$ TeV
CERC (Circular ERL collider)	e+e-, $\sqrt{s} = 0.09 - 0.60$ TeV
ReLic (Recycling Linear Collider)	e+e-, √s = 0.25 – 1 TeV
ERLC (ERL Linear Collider)	e+e-, $\sqrt{s} = 0.25 - 0.50$ TeV
XCC (FEL-based $\gamma\gamma$ collider)	ee ($\gamma\gamma$), $\sqrt{s} = 0.125 - 0.14$ TeV
MC (Higgs factory)	μ + μ -, \sqrt{s} = 0.13 TeV

Detectors

Linac

Linac e-

Positron s ource

Senarator

Separator

Linac

Damping rings

Linac

ReLiC

20 km

Linac

Separator

Separator

6

250 GeV cme Fermilab Site-Fillers

16-km collider e+e- ring https://arxiv.org/abs/2203.08088 *cool-* or *SC-RF* e+e- linear colliders 7-km for 250 GeV, 12-km 0.5+ TeV

https://arxiv.org/abs/2203.08211 https://arxiv.org/abs/2110.15800

ITF's Look Beyond Higgs Factories

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st Physics	Cost Range (2021 B\$)	Electric Power (MW)
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280
ILC-0.25	0.25	2.7	0-2	<12	7-12	140
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150
CERC(ERL)	0.24	78	5-10	19-24	12-30	90
CLIC-3	3	5.9	3-5	19-24	18-30	~550
ILC-3	3	6.1	5-10	19-24	18-30	~400
MC-3	3	2.3	>10	19-24	7-12	~230
MC-10-IMCC	10-14	20	>10	>25	12-18	<i>O</i> (300)
FCChh-100	100	30	>10	>25	30-50	~560
Collider-in-Sea	500	50	>10	>25	>80	»1000

Factors and Limits

- Main factors to consider feasibility of future colliders used to be
 - Feasibility of *Energy*
 - Feasibility of *Luminosity*
 - Feasibility of Cost
- The *European Strategy* (2019) and *Snowmass'21* discussions revealed additional limits:
 - *Time* to construct and commission
 - Societal limits: # of experts, size of facility, radiation, etc
 - *Environmental impacts*: power consumption, carbon footprints, scarcity of resources (*He*, *Nb*, *W*, etc), excavated materials, etc

Here we will only briefly touch some important points

Limits on Energy

• Synchrotron radiation defines linear vs circular if $U_{SR} < E$

$$U_{SR} = C_{\gamma} \frac{E^4}{\rho} = 88.46 \frac{r_0}{r_e} \left(\frac{m_e}{m_0}\right)^3 \frac{E^4 [GeV]}{\rho[m]}$$

for e-/e+:
$$E_{cm} \leq 500 \ GeV \left(\frac{\rho}{10 km}\right)^{\frac{1}{3}}$$

• for muons: $E_{cm} \leq 600 \, TeV \left(\frac{\rho}{10 \, km}\right)^{\frac{1}{3}}$

• for protons:
$$E_{cm} \leq 10 \ PeV \left(\frac{\rho}{10 \ km}\right)^{\frac{1}{3}}$$

Production and survival: unstable particles such as muons

$$\frac{dN}{dt} = -\frac{N}{\gamma\tau_0}; \ \gamma = \gamma_i + z \frac{d\gamma}{dz} \qquad \text{for muons} \quad G \gg 3 \text{ MeV m}^{-1}$$
where τ_0 is the lifetime, $\tau_0 \sim 2.2\mu s$ for muons...
requires fast acceleration
$$G \gg 0.3 \text{ TeV m}^{-1}$$

- Staging efficiency (losses) per stage for M stages $\geq \eta = 1 1/M$
- Technology within limited space /area:

Shiltsev | L&P of HiggsFactories

Circumference 100 km , B<16 T , **E<50 TeV** Circumference 40,000 km, B=1 T, **E<1.3 PeV** Length 50 km , G<0.1 GV/m, **E<5 TeV** Length 10 km, G<1 TV/m, **E<10 PeV**

Limits on *Luminosity* (some)

 $L = f_0 n_b N^2 / 4\pi \sigma^2$ General Equation $P_b = f_0 n_b N \gamma m c^2$ - sheer beam power $L = P_b^2 / (4\pi \gamma n_b \varepsilon \beta^* m^2 c^4) \propto P_b^2 / E$ $L \propto (\xi/\beta^*)(P_{SR}/2\pi R)(R^2/\gamma^3))$ – e/p SR rad. power $\frac{D \propto (dN/dt)E^3/\Phi}{\text{flux dilution factor}} L \propto B \frac{D\Phi}{E^2} \frac{N}{4\pi\epsilon_n \beta^*}$ $-\mu \rightarrow v$ radiation dose $|L \propto (P/E)(N_{\gamma}/\sigma_{\gamma})|$ – LC power, BS, jitter

🚰 Fermilab