

中國 神學 混為 能物 招 湖 完 揃 Institute of High Energy Physics Chinese Academy of Sciences

Circular Electron Positron Collider (CEPC)

J. Gao

On behalf of CEPC Accelerator Group

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity

Circular e+e- Colliders (eeFACT2022)

Sept. 16, 2022

Contents

- Introduction
- Review of CEPC Accelerator System Design and Power Consumptions in CDR
- CEPC TDR Accelerator System Design and Power Consumptions with Linac

Injector Energy of of 30GeV

- CEPC Accelerator System Key Hardware R&D Progresses in TDR
- CEPC TDR Siting and Civil Engineering
- CEPC TDR and EDR Schedulesand CEPC Timeline
- Summary

CEPC-SppC Physics Goals in TDR

Introduction

- Circular Electron-Positron Collider (91, 160, 240 GeV, 360GeV)
 - Higgs Factory (10⁶ Higgs) :
 - Precision study of Higgs(m_H, J^{PC}, couplings), Similar & complementary to Linear Colliders
 - Looking for hints of new physics
 - Z & W factory (10¹⁰~10¹² Z⁰) :
 - precision test of SM
 - Rare decays ?
 - Flavor factory: b, c, τ and QCD studies
- Super proton-proton Collider(~125 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h³ & h⁴ couplings

Review of CEPC Accelerator System Design and Power Consumptions in CDR

CEPC CDR Baseline Layout

CEPC as a Higgs Factory: H, W, Z, followed by a SppC ~100TeV $\frac{L}{\alpha}$

Z [mm]

CEPC Linac injector (1.2km, 10GeV)

CEPC CDR Parameters (30MW)

	Higgs	W	Z (3T)	Z (2T)			
Number of IPs		2					
Beam energy (GeV)	120	80	45.5				
Circumference (km)		100					
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	6			
Crossing angle at IP (mrad)		16.5×2					
Piwinski angle	2.58	7.0	23.8				
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0				
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+	10%gap)			
Beam current (mA)	17.4	87.9	461.0	0			
Synchrotron radiation power /beam (MW)	30	30	16.5				
Bending radius (km)		10.7					
Momentum compact (10-5)	1.11						
β function at IP $\beta_x * / \beta_v *$ (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001			
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016			
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04			
Beam-beam parameters ξ_x / ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072			
RF voltage V_{RF} (GV)	2.17	0.47	0.10				
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)					
Natural bunch length σ_{z} (mm)	2.72	2.98	2.42	4			
Bunch length σ_{z} (mm)	3.26	5.9	8.5				
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94				
Natural energy spread (%)	0.1	0.066	0.03	8			
Energy acceptance requirement (%)	1.35	0.4	0.23				
Energy acceptance by RF (%)	2.06	1.47	1.7				
Photon number due to beamstrahlung	0.1	0.05	0.02	3			
Lifetime _simulation (min)	100						
Lifetime (hour)	0.67	1.4	4.0	2.1			
F (hour glass)	0.89	0.94	0.99				
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1			

CEPC Collider Ring SRF Parameters (CDR)

Collider parameters: 20180222	н	W	Z
SR power / beam [MW]	30	30	16.5
RF voltage [GV]	2.17	0.47	0.1
Beam current / beam [mA]	17.4	87.9	461
Bunch charge [nC]	24	24	12.8
Bunch number / beam	242	1220	12000
Bunch length [mm]	3.26	6.53	8.5
Cavity number (650 MHz 2-cell)	240	2 x 108	2 x 60
Cavity gradient [MV/m]	19.7	9.5	3.6
Input power / cavity [kW]	250	278	276
Klystron power [kW] (2 cavities / klystron)	800	800	800
HOM power / cavity [kW]	0.54	0.86	1.94
Optimal Q∟	1.5E6	3.2E5	4.7E4
Optimal detuning [kHz]	0.17	1.0	18.3
Total cavity wall loss @ 2 K [kW]	6.6	1.9	0.2

J.Y. Zhai

CEPC Booster Parameters @ injection (10GeV)(CDR)

D. Wang

		H	W	Ζ		
Beam energy	GeV		10			
Bunch number		242	1524	6000		
Threshold of single bunch current	μΑ	25.7				
Threshold of beam current (limited by coupled bunch instability)	mA	127.5				
Bunch charge	nC	0.78	0.63	0.45		
Single bunch current	μΑ	2.3	1.8	1.3		
Beam current	mA	0.57	2.86	7.51		
Energy spread	%	0.0078				
Synchrotron radiation loss/turn	keV	73.5				
Momentum compaction factor	10-5		2.44			
Emittance	nm		0.025			
Natural chromaticity	H/V		-336/-333			
RF voltage	MV		62.7			
Betatron tune $v_x / v_y / v_s$			263.2/261.2/0.1	L		
RF energy acceptance	%		1.9			
Damping time	S		90.7			
Bunch length of linac beam	mm		1.0			
Energy spread of linac beam	%		0.16			
Emittance of linac beam	nm		40~120			

CEPC Booster Parameters @extraction (CDR)

		I	I	W	Z
		Off axis injection On axis injection Of		Off axis injection	Off axis injection
Beam energy	GeV	12	20	80	45.5
Bunch number		242	235+7	1524	6000
Maximum bunch charge	nC	0.72	24.0	0.58	0.41
Maximum single bunch current	μΑ	2.1	70	1.7	1.2
Threshold of single bunch current	μΑ	30	00		
Threshold of beam current (limited by RF power)	mA	1.	.0	4.0	10.0
Beam current	mA	0.52	1.0	2.63	6.91
Injection duration for top-up (Both beams)	S	25.8	35.4	45.8	275.2
Injection interval for top-up	S	73	.1	153.0	438.0
Current decay during injection interval			3	%	
Energy spread	%	0.0	94	0.062	0.036
Synchrotron radiation loss/turn	GeV	1.:	52	0.3	0.032
Momentum compaction factor	10-5		2.	44	
Emittance	nm	3.:	57	1.59	0.51
Natural chromaticity	H/V		-336	/-333	
Betatron tune v_x/v_y			263.2	/261.2	
RF voltage	GV	1.	97	0.585	0.287
Longitudinal tune		0.	13	0.10	0.10
RF energy acceptance	%	1.	.0	1.2	1.8
Damping time	ms	5	2	177	963
Natural bunch length	mm	2.	.8	2.4	1.3
Injection duration from empty ring	h	0.	17	0.25	2.2

D. Wang

CEPC Booster SRF Parameters (CDR)

10 GeV injection	н	W	Z
Extraction beam energy [GeV]	120	80	45.5
Bunch number	242	1524	6000
Bunch charge [nC]	0.72	0.576	0.384
Beam current [mA]	0.52	2.63	6.91
Extraction RF voltage [GV]	1.97	0.585	0.287
Extraction bunch length [mm]	2.7	2.4	1.3
Cavity number in use (1.3 GHz TESLA 9-cell)	96	64	32
Gradient [MV/m]	19.8	8.8	8.6
QL	1E7	6.5E6	1E7
Cavity bandwidth [Hz]	130	200	130
Beam peak power / cavity [kW]	8.3	12.3	6.9
Input peak power per cavity [kW] (with detuning)	18.2	12.4	7.1
Input average power per cavity [kW] (with detuning)	0.7	0.3	0.5
SSA peak power [kW] (one cavity per SSA)	25	25	25
HOM average power per cavity [W]	0.2	0.7	4.1
Q ₀ @ 2 K at operating gradient (long term)	1E10	1E10	1E10
Total average cavity wall loss @ 2 K eq. [kW]	0.2	0.01	0.02

J.Y. Zhai

CEPC Linac Injector-CDR

Parameter	Symbol	Unit	Baseline	Design reached
e ⁻ /e ⁺ beam energy	E_{e} / E_{e^+}	GeV	10	10
Repetition rate	f_{rep}	Hz	100	100
a. /a+ hunch nonulation	N_e/N_{e^+}		$> 9.4 \times 10^9$	$1.9 \times 10^{10} / 1.9 \times 10^{10}$
e /e ⁻ bunch population		nC	> 1.5	3.0
Energy spread (e ⁻ /e ⁺)	σ_{e}		< 2 × 10 -3	1.5×10 ⁻³ / 1.6×10 ⁻³
Emittance (e ⁻ /e ⁺)	\mathcal{E}_r	nm∙ rad	< 120	5 / 40 ~120
Bunch length (e^{-}/e^{+})	σ_l	mm		1 / 1
e ⁻ beam energy on Target		GeV	4	4
e ⁻ bunch charge on Target		nC	10	10

CEPC 30MW (CDR)

			Locatio	n and eleo	ctrical der	nand(MW)		Total
	System for Higgs (30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	Total (MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	10.55	0.64			1.72		12.9
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	212.484	20.932	10.276	1.845	7.385	12	264.912

CEPC 50MW (CDR) (rough esitimate)

			Loca	tion and	electrical	demand(N	MW)	Total
		Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	182.238	0.15	5.8				187.188
2	Cryogenic System	10.55	0.64			1.72		12.9
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.4	0.15	0.2	12	19.95
	Total	291.295	20.932	10.476	1.845	7.385	12	342.55

CEPC TDR Accelerator System Design and Power Consumptions with Linac Injector Energy of of 30GeV

CEPC TDR Layout@20GeV Linac

CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV

Z [mm]

Inside of the rin

E 1001 E 800

CEPC TDR Layout@30GeV Linac

E 800

Z [mm]

CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV

CEPC TDR Parameters (30MW)

	Higgs	Z	W	ttbar					
Number of IPs		2							
Circumference [km]		100	.0						
SR power per beam [MW]		30							
Half crossing angle at IP [mrad]		16.	5						
Bending radius [km]	10.7								
Energy [GeV]	120	45.5	80	180					
Energy loss per turn [GeV]	1.8	0.037	0.357	9.1					
Piwinski angle	5.94	24.68	6.08	1.21					
Bunch number	268	11934	1297	35					
Bunch spacing [ns]	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)					
Bunch population [10 ¹⁰]	13	14	13.5	20					
Beam current [mA]	16.7	803.5	84.1	3.3					
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71					
Beta functions at IP (bx/by) [m/mm]	0.3/1	0.13/0.9	0.21/1	1.04/2.7					
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7					
Beam size at IP (sigx/sigy) [um/nm]	14/36	6/35	13/42	39/113					
Bunch length (natural/total) [mm]	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9					
Energy spread (natural/total) [%]	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20					
Energy acceptance (DA/RF) [%]	1.6/2.2	1.3/1.7	1.2/2.5	2.3/2.6					
Beam-beam parameters (ksix/ksiy)	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1					
RF voltage [GV]	2.2	0.12	0.7	10					
RF frequency [MHz]	650	650	650	650					
Longitudinal tune Qs	0.049	0.035	0.062	0.078					
Beam lifetime (bhabha/beamstrahlung)[min]	39/40	80/18000	60/700	81/23					
Beam lifetime [min]	20	80	55	18					
Hour glass Factor	0.9	0.97	0.9	0.89					
Luminosity per IP[1e34/cm^2/s]	5.0	115	16	0.5					

CEPC TDR Parameters (50MW upgrade)

	Higgs	W	Z	ttbar	
Number of IPs			2		
Circumference [km]				This parameter table	
SR power per beam [MW]			50		is used by US
Half crossing angle at IP [mrad]			16.5		Snowmass21
Bending radius [km]			10.7		for CEPC physics
Energy [GeV]	120	80	45.5	180	norformance notential
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1	
Piwinski angle	5.94	6.08	24.68	1.21	evaluation
Bunch number	415	2162	19918	58	
Bunch spacing [ns]	385	154	15(10% gap)	2640	CEPC Accelerator white
Bunch population [10 ¹⁰]	14	13.5	14	20	paper to Spowss21
Beam current [mA]	27.8	140.2	1339.2	5.5	
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71	arXiv:2203.09451
Phase advance of arc FODOs [degree]	90	60	60	90	
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7	
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7	
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113	
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9	
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20	
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6	
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1	
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)	
RF frequency [MHz]			650		
Beam lifetime [min]	20	55	80	18	
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8	

CEPC MDI

- IR Superconducting magnet design
- IR beam pipe
- Synchrotron radiation
- Beam loss background
- Shielding
- Mechanical support

Full detector simulation

- Central beryllium pipe inner diameter changes from 28mm(CDR) to 20mm
- There is no SR photons hitting the central beam pipe in normal conditions.
- Single layer beam pipe with water cooling, SR heat load is not a problem.

All the devices are within the detective angle, acos0.99.

L*=1.9m, θc=33mrad, βx*=0.33m, βy*=1.0mm, Emittance=0.68nm

- Strength requirements of antisolenoids (peak field $B_{z} \sim 7.2T$)
- Two-in-one type SC quadrupole coils (Peak field 3.8T & 141T/m) with room temperature vacuum chamber & Iron voke

CEPC TDR RF Parameters (Collider Ring)

30 MW SR power per beam for each mode.	ttb	bar					
ttbar and Higgs half fill with common cavities for two rings, W and Z with separate cavities for two rings.	additional 5-cell cavities	existing 2-cell cavities	Higgs	W	bypass with 1-cell cavities		
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0	.5	5	16	115		
RF voltage [GV]	10 (7.8	3 + 2.2)	2.2	0.7	0.12		
Beam current / beam [mA]	3	.3	16.7	84.1	803.5		
Bunch charge [nC]	3	2	20.8	21.6	22.4		
Bunch length [mm]	2	.9	4.1	4.9	8.7		
650 MHz cavity number	240	240	240	120/ring	30/ring		
Cell number / cavity	5	2	2	2	1		
Gradient [MV/m]	28.5	20	20	12.7	8.7		
$Q_0 @ 2 K$ at operating gradient (long term)	5E10		2E10				
HOM power / cavity [kW]	0.4	0.16	0.45	0.93	2.9		
Input power / cavity [kW]	194	56	250	250	1000		
Optimal Q _L	1E7	7E6	1.6E6	6.4E5	7.5E4		
Optimal detuning [kHz]	0.01	0.02	0.1	0.9	13.3		
Cavity number / klystron	4	12	2	2	1		
Klystron power [kW]	1400	1400	800	800	1400		
Klystron number	60	20	120	60	60		
Cavity number / cryomodule	4		6		1		
Cryomodule number	60		40		30		
Total cavity wall loss @ 2 K [kW]	9.5	4	.7	1.9	0.45		

J.Y.Zhai

CEPC TDR RF Scheme Updated

J.Y. Zhai Y.W. Wang

- Aiming for all-mode seamless switching in whole project lifecycle without hardware movement
- Highest luminosity in each energy. Maximize performance and flexibility for future circular electron positron collider
- Remained issue: Higgs operation after ttbar upgrade. Solution: add center connection line (short black line). Need to check if the dipole SR light will still hit the cavity after effective shielding.

3146 m 1080 m 160 m 373 m 500 m 0.35 m 1 m Outer Ring

Stage 1: H/W/LL-Z (and HL-H/W upgrade)

CEPC Booster TDR Parameters

D. Wang

W

Off axis

injection

80

1297

Η

injection injection

120

On axis

261+7

Off axis

268

tt

Off axis

injection

180

35

GeV

Ζ

Off axis injection

45.5

5967

3978

- Injection energy: $10 \text{GeV} \rightarrow 20 \text{GeV}$
- Max energy: $120 \text{GeV} \rightarrow 180 \text{GeV}$

I owar amittance — now lattice (TME)							Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81
• Lower emittance	:e —	- new	lattic	e	LE)		Maximum single bunch current	μΑ	3.0	2.1	61.2	2.2	2.4	2.42
		1	1	1			Threshold of single bunch current	μΑ	91.5	7	0	22.16	9.57	7
Injection		tt	H	W	Z		Threshold of beam current	mA	0.3		1	4	16	
Beam energy	GeV			20			(limited by RF system)		0.5		•	•		1
Bunch number		35	268	1297	3978	5967	Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4
Threshold of single bunch current	μA	5.79	4.20		3.92		Growth time (coupled bunch instability)	ms	16611	2359	1215	297.8	49.5	31.6
Threshold of beam current (limited by coupled bunch instability)	mA			27			Bunches per pulse of Linac		1		1	1	2	
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9	Time for ramping up	s	7.3	4	.5	2.7	1.6	-
Single bunch current	μA	3.4	2.3	2.4	2.65	2.69	Injection duration for top-up (Both beams)	s	30.0	23.3	32.8	39.4	139.0	
Beam current	mA	0.12	0.62	3.1	10.5	16.0	Injection interval for top-up	s	65	38		155	5 153.5	
Growth time (coupled bunch instability)	ms	1690 358 67 19.4 12.5		Current decay during injection interval			3%							
Energy spread	%	0.016			Energy arroad	07	0.15	0.0	000	0.066	0.03	7		
Synchrotron radiation loss/turn	MeV	1.3		Energy spread	70	0.15	0.099 0.000		0.05					
Momentum compaction factor	10-5			1.12			Synchrotron radiation loss/turn	GeV	8.45	1.69 0.33		0.03	4	
Emittance	nm			0.035			Momentum compaction factor	10-5	1.12					
Natural chromaticity	H/V			-372/-269			Emittance	nm	2.83	1.	26	0.56	0.19	9
RF voltage	MV	531.0	230.2		200.0		Natural chromaticity	H/V		1	-372	/-269		
Betatron tune v_x/v_y			3	21.23/117.18			Betatron tune v_x/v_y				321.27	/117.19		
Longitudinal tune		0.14	0.0943		0.0879		RF voltage	GV	9.7	2.	17	0.87	0.46	5
RF energy acceptance	%	5.9	3.7		3.6		Longitudinal tune		0.14	0.0	943	0.0879	0.087	79
Damping time	S			10.4			RF energy acceptance	%	1.78	1.	59	2.6	3.4	
Bunch length of linac beam	mm			0.5			Domning time		14.2	4-	16	160.9	879)
Energy spread of linac beam	%			0.16			Damping time	IIIS	14.2	47	7.0	100.8	0.75	-
Emittance of linac beam	nm			10			Natural bunch length	mm	1.8	1.	85	1.3	0.75	>
							Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8

Extraction

Beam energy

Bunch number

*Diameter of beam pipe is 55mm for re-injection with high single bunch current @120GeV.

CEPC TDR SRF Parameters (Booster Ring)

30 MW Collider SR power per beam for each mode. 20 GeV injection.	ttbar	Higgs off/on-axis	w	Z high current
Extraction beam energy [GeV]	180	120	80	45.5
Extraction average SR power [MW]	0.087	0.09	0.01	0.004
Bunch charge [nC]	0.96	0.7	0.73	0.83
Beam current [mA]	0.11	0.56/0.98	2.85	14.4
Injection RF voltage [GV]	0.438	0.197	0.122	0.122
Extraction RF voltage [GV]	9.7	2.17	0.87	0.46
Extraction bunch length [mm]	1.8	1.85	1.3	0.75
Cavity number (1.3 GHz 9-cell)	336	96	64	32
Extraction gradient [MV/m]	27.8	21.8	13.1	13.8
Q ₀ @ 2 K at operating gradient (long term)		1E	10	
QL	4E7		1E7	
Cavity bandwidth [Hz]	33		130	
Peak HOM power per cavity [W]	0.4	1.4/2.7	9.8	108.5
Input peak power per cavity [kW]	7.9	15.3/21.3	15	33
SSA peak power [kW] (one cavity per SSA)	10	25	25	40
Cryomodule number (8 cavities per module)	42	12	8	4

CDR Higgs energy:

J.Y. Zhai

-collider ring: 240 2cell 650MHz cavities

-booster: 96 1.3GHz 9cell cavities

-Nb consumption: 20 tons

For ttbar energy:

In addition to CDR Higgs energy, SRF cavity numbers have to be increased: -collider ring:+350 5cell 650MHz cavities -booster ring:+350 1.3GHz 9 cell cavities -Additional Nb consumption:65 tons

For 30MW SR/beam Mode at Higgs energy, the cryogenic system need **32000liter Hellium**

For 50MW/beam SR Mode: at Higgs energy, the cryogenic system needs 42000liter Hellium; at ttbar energy 130000liter Hellium needed

CEPC 20GeV Linac for TDR

• EBTL is in vertical plane with 1.2 m separation

J.R. Zhang C. Meng

- Avoid interference with energy analyzing station, transport lines between the Linac and damping ring, waveguide and positron source
- Reduce the tunnel width
- Accelerating structure
 - S-band: FAS/PSPAS/SAS
 - C-band: TAS

Sept 16, 2022 J. Gao

CEPC 20GeV Linac TDR Parameters J.R. Zhang C. Meng

• Baseline scheme

- 20 GeV
 - Low magnetic field & large magnetic field range
 - C-band
 - Higher gradient \rightarrow Shorter linac tunnel length
 - Small aperture & Strong wakefield
- 10 nm
 - High luminosity
- 100 Hz
 - Injection efficiency
 - High luminosity Z need faster injection process
 - 200 Hz
 - 100 Hz & two-bunch-per-pulse
 - 200 Hz & two-bunch-per-pulse (?)

Parameter	Symbol	Unit	Baseline
e⁻ /e⁺ beam energy	E_{e}/E_{e^+}	GeV	20
Repetition rate	f _{rep}	Hz	100
	Ne-/Ne+	×10 ¹⁰	0.94(1.88)
e le bunch population		nC	1.5 (3)
Energy spread (e ⁻ /e ⁺)	$\sigma_{\scriptscriptstyle E}$		1.5×10 ⁻³
Emittance (e [_] /e ⁺)	$\mathcal{E}_{x,y}$	nm	10

Parameter	Unit	S- band	C-band
Frequency	MHz	2860	5720
Length	m	3.1	1.8
Cavity mode		2π/3	3π/4
Aperture diameter	mm	20~24	11.8~16
Gradient	MV/m	21	45

CEPC 20GeV Positron Linac Design J.R. Zhang,

• Positron Linac

- Wakefield & CSR
- Emittance(w/o error)
 - Growth: 5%
 - 5.2nm@20GeV

Parameter	Unit	Baseline	Electron	Positron
e [_] /e⁺ beam energy	GeV	20	20.38	20.37
Repetition rate	Hz	100	100	100
e ⁻ /e ⁺ bunch population	×10 ¹⁰	0.94(1.88)	1.88	1.88
	nC	1.5 (3)	3	3
Energy spread (e [_] /e ⁺)		1.5×10 ⁻³	1.3×10 ⁻³	1.3×10 ⁻³
Emittance (e [.] /e ⁺)	nm	10	2.5	5.2

Sept 16, 2022 J. Gao

CEPC linac injector reached design goals taking into account of errors

C.Meng

CEPC LINAC Design Evolution

The Linac energy was chosen as 30GeV at June 22, 2022

J.R. Zhang C. Meng

Energy: 30 GeV Emittance: 6.5nm

Stage			PreCDR		CDR						TDR					
Daramatar		Unit	1/1	V2					V3						V4	
Parameter		Unit	VL	V2.1 V2.2	V2.3	V3.1	V3.2	V3.3	V3.4	V3.5	V3.6	V3.7	V3.8	V4.1	V4.2	V4.3
Beam energy (e+/e-)	E _{e-} /E _{e+}	GeV	6		10			4		10		20	10/20		20	30
Repetition rate	f _{rep}	Hz		50							100					
Bunch number per pulse								1							18	.2
$Runch nonulation (o_{+}/o_{-})$	N /N	×10 ⁹		20			6.25		6.25(18.8)				9.4 (18.	.8)		
	e-// e+	nC		3.2			1		1(3)				1.5 (3)		
Energy spread (e⁺/e⁻)	σ _E	×10 ⁻³		1					2						1.5	
e ⁻ bunch charge at target		nC							10							
e ⁻ beam energy at target		GeV		4				2				4				
Emittance	ε	nm				300				12	0	60	40		10	6.5
			Ye	s						Yes		Yes			Yes	
Damning Ring	E _{e+}	GeV	1.1	1	No			1.1	1.1			1.1				
	С	m	58.	5					58.5		75.4	75.4				
	ε	mm-mrad	28	7						287		377	377		94	
Bunch compressor					No				Yes	N	C	Yes				
Accelerating strucutre							S-band						S	-band+C-	band	
RF frequency	f _{RF}	MHz				2856.	75				2860			2860/57	20	
Accelerating gradient		MV/m	15/27	18/27 or. 18	3/21				21					22 & 27/	45	
Klystron-to-ACC.Struc.			1-t-2	1-t-2 or. 1-	t-4				1-t-4				1-t-4	& 1-t-2(S)	/1-t-2(C)	
Shared Linac Energy range		MeV	200-1100							No						
Linac tunnel length		km	600		120	0		500		1200			1	400		1800
Collider circumference		km	54 & 61	61							100					
Layout			shared Linac	3 layout sche	emes	TGB o	r EBTL	Pre-BST				EB	FL			
Date			Apr-16	Nov-16		Dec-16	Apr-17	Aug-17	Oct-17	Dec-17	Jul-18	Mar-19	Sep-19	May-21	Mar-22	Jun-22
6. 2022 J. Gao				eeF	ACT2	022. Fra	iscati. R	ome. Italy	/							

CEPC LINAC of 30GeV

C. Meng

- 30GeV-Linac Scheme
 - C-band accelerating structure is used in TAS form 1.1GeV to 30GeV
 - S-band accelerating structure is used in FAS with energy of 4GeV and SAS with energy of 1.1 GeV
 - The bunch charge is 1.5nC and have the capability to reach 3nC both for electron and positron beam
- Electron Linac
 - ESBS+FAS+EBTL+TAS
- Positron Linac
 - ESBS+FAS+PSPAS+SAS+DR+TAS
- The Linac length is 1.6km and there is still 0.2km as reserved space, the Linac tunnel length is 1.8km
 - The circumference of the damping ring is about 0.15km

	Parameter	Symbol	Unit	Baseline						
	Beam energy	E_{e}/E_{e+}	GeV	30						
	Repetition rate	f _{rep}	Hz	100						
	Runch population	Ne-/Ne+	×10 ¹⁰	0.94						
	Buildin population		nC	1.5						
	Energy spread	$\sigma_{\scriptscriptstyle E}$		1.5×10 ⁻³						
	Emittance	\mathcal{E}_r	nm	6.5						
ESBS: Elec FAS: First EBTL: Elec	tron source & bunching system accelerating section tron bypass transport line EBTL	DR PSPAS: Positron SAS: Second a TAS: Third acc DR: Damping	source & pre-a ccelerating se elerating secti ring	accelerating section ction on						
	FAS PSPAS SAS		IAS							
T T 50MeV 1.1G	ieV 4GeV 200MeV 1.1Ge 335.5m 243.5m 80.9m ↓1	eV 1.1GeV	1163.4m	11 30GeV						
· · ·	345.9m	601.3m								
	1800 0m									

CEPC LINAC Design (30GeV)

C. Meng

Simulation results

CEPC-LINAC-TDR-POWER@30MW and **50MW**

	Power [MW]	CDR	TDR	C. Meng
1	RF system	0.48	0.81	
2	RF power source	5.77	11.12	
3	Magnets	/	/	
4	Magnet power supplies	1.75	2.42	
5	Vacuum system	0.65	1.77	
6	Instrumentation	0.20	0.20	
7	Control system	0.20	0.20	
8	Mechanical systems	/	/	
9	Radiation Protection	0.10	0.10	
10	Experimental devices	/	/	
11	Utilities	1.38	1.98	
12	General services	0.20	0.29	
	Total	10.7	18.9	

For 50MW operation, CEPC linac injector will use two bunch scheme, there is very small difference 30MW and 50MW operation modes for electron and positron source.

CEPC TDR Power Consumption Breakdowns@Higgs with 30GeV injection Linac and 30MW SR/beam

		_ocation and	')				
	Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
RF Power Source	96.9	1.4	11.1				109.5
Cryogenic System	11.6	0.6	-		1.1		13.4
Vacuum System	1.0	3.8	1.8				6.5
Magnet Power Supplies	52.3	7.5	2.4	1.1	0.3		63.5
Instrumentation	1.3	0.7	0.2				2.2
Radiation Protection	0.3		0.1				0.4
Control System	1.0	0.6	0.2	0.0	0.0		1.8
Experimental devices					4.0		4.0
Utilities	31.8	3.5	2.0	0.6	1.2		39.1
General services	7.2		0.3	0.2	0.2	12.0	19.8
RF system			0.8				0.8
TOTAL	203.4	18.2	18.9	1.8	6.8	12.0	261.1

CEPC TDR Power Consumption Breakdowns@Higgs with 30GeV injection Linac and 50MW SR/beam

		L	ocation and					
		Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
1	RF Power Source	161.5	1.4	11.1				174.1
2	Cryogenic System	15.5	0.6	-		1.7		17.9
3	Vacuum System	1.0	3.8	1.8				6.5
4	Magnet Power Supplies	52.3	7.5	2.4	1.1	0.3		63.5
5	Instrumentation	1.3	0.7	0.2				2.2
6	Radiation Protection	0.3		0.1				0.4
7	Control System	1.0	0.6	0.2	0.0	0.0		1.8
8	Experimental devices					4.0		4.0
9	Utilities	42.4	3.5	2.0	0.6	1.2		49.7
10	General services	7.2		0.3	0.2	0.2	12.0	19.8
11	RF system			0.8				0.8
12	TOTAL	282.4	18.2	18.9	1.8	7.4	12.0	340.7

CEPC TDR Power Consumption Breakdowns@ttbar with 30GeV injection Linac and 50MW SR/beam

		l	ocation and					
		Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
1	RF Power Source	161.5	1.4	11.1				174.1
2	Cryogenic System	25.2	0.6	-		1.1		26.9
3	Vacuum System	2.0	3.8	1.8				7.6
4	Magnet Power Supplies	118.8	16.8	2.4	1.1	0.3		139.3
5	Instrumentation	1.3	0.7	0.2				2.2
6	Radiation Protection	0.3		0.1				0.4
7	Control System	1.0	0.6	0.2	0.0	0.0		1.8
8	Experimental devices					4.0		4.0
9	Utilities	44.7	3.5	2.0	0.6	1.2		52.0
10	General services	7.2		0.3	0.2	0.2	12.0	19.8
11	RF system			0.8				0.8
12	TOTAL	361.9	27.5	18.9	1.8	6.8	12.0	428.9

CEPC TDR Power Consumption Breakdowns@Z with 30GeV injection Linac and 30MW SR/beam

			ocation and	')				
		Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
1	RF Power Source	96.9	0.1	11.1				108.1
2	Cryogenic System	4.1	0.6	-		1.1		5.9
3	Vacuum System	1.0	3.8	1.8				6.5
4	Magnet Power Supplies	9.6	1.4	2.4	1.1	0.3		14.7
5	Instrumentation	1.3	0.7	0.2				2.2
6	Radiation Protection	0.3		0.1				0.4
7	Control System	1.0	0.6	0.2	0.0	0.0		1.8
8	Experimental devices					4.0		4.0
9	Utilities	28.1	3.5	2.0	0.6	1.2		35.5
10	General services	7.2		0.3	0.2	0.2	12.0	19.8
11	RF system			0.8				0.8
12	TOTAL	149.4	10.8	18.9	1.8	6.8	12.0	199.7

Snowmass Luminosity and Power Consumption Evaluations (CEPC)

I he items
listed in the
Snowmass
Luminosity
Power table
are less than
the complete
power bugets
for a real
machine
on site

. .

Proposal name	CEPC	CEPC	CEPC	CEPC
Beam energy [GeV]	45.5	120.0	120.0	180.0
, Average beam current [A or mA]	803.5	16.7	27.8	5.5
SR power [MW]	30.0	30.0	50.0	50.0
Collider cryo power [MW]	5.2	12.7	17.2	26.3
Collider RF power [MW]	96.9	96.9	161.5	161.5
Collider magnet power [MW]	9.8	52.6	52.6	119.1
Cooling & ventilation power [MW]	35.5	39.1	49.7	52.0
General services power [MW]	19.8	19.8	19.8	19.8
Injector cryo power [MW]	0.6	0.6	0.6	0.6
Injector RF power [MW]	0.1	1.4	1.4	1.4
Injector magnet power [MW]	1.4	7.5	7.5	16.8
Pre-injector power (where applicable) [MW]	17.7	17.7	17.7	17.7
Detector power (if included) [MW]	4.0	4.0	4.0	4.0
Data center power (if included) [MW]	-	-	-	-
Total power [MW]	191.1	252.4	332.1	419.3
Luminosity [10^(34)/cm^2/s] (total 2 IP values)	230.0	10.0	16.7	1.7
Total integrated luminosity / year [1/fb/yr]	29900.0	1300.0	2171.0	217.1
Effective physics time per year asumed/needed to				
achieve integrated annual luminosity [10^7 s]	1.3	1.3	1.3	1.3
Energy Consumption / year [TWh]	0.7	0.9	1.2	1.5

SppC Collider Parameters -Parameter list (updated Feb. 2022)

Jingyu Tang Haocheng Xu

Main parameters			Normalized rms transverse emittance	1.2	um
Circumference	100	km	Beam life time due to burn-off	81	hour
Beam energy	62.5	TeV	Turnaround time	23	hour
Lorentz gamma	66631		Tatal anala time	10.4	hour
Dipole field	20.00	Т		10.4	nour
Dipole curvature radius	10415.4	m	Total / inelastic cross section	161	mbarn
Arc filling factor	0.780		Reduction factor in luminosity	0.81	
Total dipole magnet length	65442.0	m	Full crossing angle	73	µrad
Arc length	83900	m	rms bunch length	60	mm
Total straight section length	16100	m	rms IP spot size	3.0	um
Energy gain factor in collider rings	19.53		Beta at the 1st parasitic encounter	28 625	m
Injection energy	3.20	TeV	rms spot size at the 1st parasitic encoun	20.020	
Number of IPs	2		Stand anomal non horm	4.0	
Revolution frequency	3.00	kHz	Stored energy per beam	4.0	GJ
Revolution period	333.3	μs	SR power per ring	2.2	MW
Physics performance and beam parameters			SR heat load at arc per aperture	26.3	W/m
Initial luminosity per IP	4.3E+34	$cm^{-2}s^{-1}$	Critical photon energy	8.4	keV
Beta function at initial collision	0.5	m	Energy loss per turn	11.40	MeV
Circulating beam current	0.19	A	Damping partition number	1	
Nominal beam-beam tune shift limit per	0.015		Damping partition number	1	
Bunch separation	25	ns	Damping partition number	2	
Bunch filling factor	0.756		Transverse emittance damping time	0.51	hour
Number of bunches	10080		I anaitudinal amittanaa damnina tima	0.51	hour
Bunch population	4.0E+10		Longitudinal entitance damping time	0.23	nour
Accumulated particles per beam	4.0E+14				

...

CEPC CDR-Higgs

Peak Luminosity = 3×10^{34} cm⁻²s⁻¹

Ingetrated Luminosity = 5.6 ab^{-1}

Higgs annual luminosity =0.8 ab⁻¹

CEPC CDR Vol. I, Accelerator

IHEP-CEPC-DR-2018-01 IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

CEPC TDR-Higgs

Peak Luminosity = 5×10^{34} cm⁻²s⁻¹

Ingetrated Luminosity = 9.3 ab^{-1}

Higgs annual luminosity =1.3 ab⁻¹

CEPC Accelerator Snowmass 21 AF White Paper

1) CEPC Accelerator white paper
to Snowmass21, arXiv:2203.09451
2) CEPC CDR Vol. I, Accelerator
http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf
3) CEPC CDR Vol. II, Physics and Detector
http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
CEPC Video (BIM design)
1) http://cepc.ihep.ac.cn/Qinhuang_Island.mp4
2) http://cepc.ihep.ac.cn/Huzhou.mp4

3) http://cepc.ihep.ac.cn/Changsha.mp4

CEPC TDR-Higgs (upgrade)

Peak Luminosity = 8.3× 10³⁴cm⁻²s⁻¹

Ingetrated Luminosity = 15.4 ab⁻¹

Higgs annual luminosity =2.2 ab⁻¹

These parameters are used for Snowmass21

CEPC CDR Vol. II, Physics/Detector

IHEP-CEPC-DR-2018-02 IHEP-EP-2018-03 IHEP-TH-2018-03

CEPC Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group October 2018

CEPC Accelerator System Key Hardware R&D Progresses in TDR

CEPC TDR R&D Status of Key Technologies

Latest performance of LPF1-U (SppC)

Qingjin Xu

Picture of LPF1-U

Dual aperture superconducting dipole achieves 12.47 T at 4.2 K Entirely fabricated in China. The next step is reaching 16-19T field

CEPC TDR Siting and Civil Engineering

2019.12月8-11 and 2020.1.8-10 Chuangchun sitings update

2019.08.19-20 Changsha siting update

CEPC Siting Status

Three companies are working on siting and issues

2020.9.14-18 Qinhuangdao updated

2019.12.16-17 Huzhou siting update

- 1) Qinhuangdao, Hebei Province (Completed in 2014)
- 2) Huangling, Shanxi Province (Completed in 2017)
- 3) Shenshan, Guangdong Province(Completed in 2016)
- 4) Huzhou, Zhejiang Province (Started in March 2018)
- 5) Chuangchun, Jilin Province (Started in May 2018)
- 6) Changsha, Hunan Province (Started in Dec. 2018)

CEPC Siting and Civil Engineering (Qinhuangdao TDR site as an example)

CEPC Siting and Civil Engineering (Huzhou TDR site as an example)

The minimum depth of the main ring is 70m

project constructions.

The geological work can be converted into three dimensions geological display

火山岩分布区 Volcanic rocks

IP4

火山岩分布区Volcanic rock

第四系分布

Quaternary

CEPC Siting and Civil Engineering (Changsha TDR site as an example)

Very good geological condition

CEPC IR Region

Name	L×W×H	Numb.
Experimental hall	39.4×20.4× 31	×2
Axiliary hall	101.4×20× 26.2	×2
Booster tunnel	1679×3.5× 3.5	×4
Collider tunnel	1659.3x(6~ 11.4)x5	×4
Travel shaft	1200x7.5x7. 5	×2
Connection, electric cable and ventilation shaft	70x10x10	×2

CEPC Civil Engineering Design (BIM)

Electrical Equipment General Layout in Auxiliary Beam monitoring **Control Cabinet** Vaccum Cabinet dary power Cabinet 0.4kV LV switchgear

eeFACT2022, Frascati, Rome, Italy

Transformer

Cables installed!

CEPC TDR and EDR Schedules and CEPC Timeline

CEPC Accelerator TDR Documentation Preparation and EDR Plans

TDR timeline:

TDR started to write after the first IARC reveiw in June 2022 TDR completes in Dec. 2022 (with IARC review, SC and IAC approval)

CEPC Accelerator EDR Phase Plan: Jan. 2023-Dec. 2025

-CEPC site study converging to one or two with detailed feasibility studies (tunnel and infrastructures,

environment)

-Engineering design of CEPC accelerator systems and components towards fabrication in an industrial way

-Site dependent civil engineering design implementation preparation

-Work closely with CAS and MOST to prepare CEPC be put in the "15th five year plan" (under way)

-EDR document completed for government's approval of starting construction around 2026 (the starting of the

"15th five year plan")

CEPC Project Timeline

1/19/2022 J. Gao

Civil Construction and Installation Timeline

Summary

• CEPC CDR parameters, designs and AC power consumptions are reviewed

• CEPC TDR parameters, designs and AC power consumptions are presented.

• CEPC TDR AC power consumption has not been fully optimized, such as RF operation modes, magnets' power distribution networks, utilities, etc., further power reduction optimization will be conducted.

- estimation is still on going to be more complete and precise
- CEPC accelerator key hardware R&D, CEPC TDR siting and civil engeering design are presented

CEPC TDR and EDR Schedules and CEPC Timeline are given

Sept 16, 2022 J. Gao

Acknowledgements

- Thanks go to CEPC-SppC accelerator team's hardworks, international and CIPC collaborations
- Special thanks to CEPC SC, IAC and IARC's critical comments, suggestions and encouragement