RF Developments for HEPS

Pei Zhang (Institute of High Energy Physics, CAS)

eeFACT2022, 12-15 Sep 2022, INFN-LNF, Frascati, Italy

Outline

- Introduction to HEPS
- Booster RF system
- Storage-ring RF system
- Summary

<u>High Energy Photon Source (HEPS)</u>

- HEPS is a 6 GeV diffraction-limited synchrotron light source
- Location: 80 km from IHEP main campus, 70 km from the forbidden city
- Construction schedule: Jun. 2019 Dec. 2025

Civil construction

- HEPS civil construction in good shape
- Platform of Advanced Photon Source Technology R&D (PAPS) completed in 05.2021
- First accelerator component installation in 07.2021
- Linac commissioning started in 07.2022 (underway)

HEPS main parameters

Parameter	Value	Unit
Beam energy	6	GeV
Circumference	1360.4	m
Beam current	200	mA
Lattice type	7BA	-
Number of sectors	48	-
Natural emittance	34.2	pm∙rad
Natural bunch length	5.06	mm
Energy loss (bare lattice)	2.64	MeV
Total no. of IDs (Phase I)	14	-
Total beam power	850	kW
Radiation damping time (x/y/z)	10.85/20.62/18.76	ms
RF frequency (main, 3 rd harm.)	166.6, 499.8	MHz
Main RF voltage (w/ harm. cav.)	5.16	MV

Y. Jiao et al., Journal of Synchrotron Radiation 25, 1611 (2018).

HEPS RF system

P. Zhang et al., IPAC2021, MOPAB380.

RF system for the booster

Booster RF: parameters

Six sets of 499.8MHz 100kW SSA

Parameter	Value	Unit
Circumference	454.066	m
Beam energy	0.5-6	GeV
Beam current	13	mA
Energy loss	4.02	MeV
Beam power	52.26	kW
Rep. rate	1	Hz

Parameter	Value	Unit
RF frequency	499.8	MHz
Total RF voltage	8	MV
No. of cavities	6	-
RF voltage per cav.	1.35	MV
Cavity type	5-cell, copper	
Wall loss per cav.	61	kW
Beam power per cav.	9	kW
Total RF power per cav.	70	kW
Coupling factor	1.17	-
RF transmitter	SSA	-
RF power per source	100	kW
No. of RF stations	6	-
No. of transmitter per station	1	-
Field noise (pk-pk)	±1%, ±1°	-

Booster RF: cavities

- Contract of 6 PETRA-type 5-cell cavities signed with RI GmbH in 03.2020
- 4 out of 6 cavities delivered (5 months delayed due to COVID-19)
- Several design changes implemented for HEPS
- Synchrotron light collimator at beampipe (w/ modified cooling channels)
- Additional monitoring for power coupler (camera, arc, LED)
- Fiducial targets added, gate valves rotated
- Two cavities passed high-power conditioning to 120kW CW (4 more cavities)

Booster RF: RF sources

- Contract of one 150kW and five 100kW SSAs signed in 03.2020
- 150kW SSA passed SAT in 10.2021 (9 mos. delayed D/T COVID)
- Accumulated on-site aging time: ~150 hours (0 module failed)
- Accumulated run time: >1600 hours (2 modules failed)
- Five 100kW series SSAs passed FAT in Q2.2022
- Installation on HEPS booster scheduled in Q4.2022

2kW unit (600W × 4)

Booster RF: LLRF

- 1st- and 2nd-gen LLRF in-house developed
 - Up-/down-conversion, Altera FPGA
 - Lab test (pk-pk): ±0.02% (amp.), ±0.01° (phase)
 - 1st-gen in beam operation at BEPCII since 09.2019
 - Noise suppression algorithms implemented

[1] Q.Y. Wang et al., SRF2019, THP075. [2] Q.Y. Wang et al., Radiat. Detect. Technol. Methods 5, 220–227 (2021).

RF system for the storage ring

Storage-ring RF: main parameters

Parameter	Value	Unit
Circumference	1360.4	m
RF frequency (f ₀)	166.6	MHz
Total energy loss per turn (U ₀)	4.14	MeV
Total beam power (P _b)	850	kW
Total RF voltage (V _{RF})	5.16	MV
Number of main RF cavities	5	_
RF power per main cavity	170	kW
Cavity type	SRF cavity	-
HOM control	Heavy damping	_
Harmonic RF frequency (f _{HC})	499.8	MHz
Number of RF stations	5 + 2	_
Transmitter power per RF station	260	kW
Field noise (pk-pk)	±0.1%, ±0.1°	-

Why 166.6MHz?

Storage-ring RF: cavities

166.6MHz quarter-wave β=1 SRF cavity (New development)

499.8MHz KEKB-type single-cell SRF cavity

Cavity design features (166.6MHz)

- **Low frequency**: 166.6MHz, **β**=1
- High current: 200mA \rightarrow heavy HOM damping: Q_L <1000
- **High RF power**: 170kW CW per cavity
- **Compactness**: limited space of the straight section (6m for 2 cavs)
- Stable operation (user facility): large margin in RF parameters
- Risks: no time or facilities for beam demonstration
- Design quickly converged to β =1 quarter-wave geometry

β=1 quarter-wave cavities

1.3m

BNL 56MHz QW cavity

Q. Wu et al., *SRF2015*, WEBA07. Q. Wu et al., *Phys. Rev. Accel. Beams* 22, 102001 (2019).

CERN 200MHz QW for HL-LHC

R. Calaga et al., *IPAC2016*, TUPMW034.

Development strategy

Two-step approach

- 1. Proof-of-Principle (PoP) cavity: production technics, surface treatment, maximize learning, with no HOM damping
- 2. HOM-damped cavity: cavity, ancillaries, integration

18

PoP bare cavity development

Parameter	Value	Unit
Frequency	166.6	MHz
Cavity length (main)	530	mm
Cavity diameter (no ports)	397	mm
Aperture (small side)	80	mm
R/Q	136	Ω
Geometry factor	54.5	Ω
Design voltage (Vc_d)	1.5	MV
Design gradient	12.5	MV/m
QO at Vc_d	≥1e9	-
Epeak at Vc_d	40.1	MV/m
Bpeak at Vc_d	63.9	mT
Stored energy	15.8	J

- Q₀ (4K) at design Vc (1.5MV): 2.4×10⁹
- Maximum Ep: 82 MV/m
- Maximum Bp: 132 mT
- FE onset: Ep = 48MV/m
- Residual resistance: 2.2 $n\Omega$

[1] P. Zhang et al., *Rev. Sci. Instrum* 90, 084705 (2019). [2] X.Y. Zhang et al., *NIM-A* 947, 162770 (2019).

PoP dressed cavity development

- Large performance degradation observed from VT to HT
 - Cause: overheating on FPC Nb tube extension, 80mm -> 120mm
 - Relocate the pickup to simplify helium jacket design

[1] X.Y. Zhang et al., IEEE Trans. Appl. Supercond. 30, 3500208 (2020). [2] T.M. Huang et al., AIP Advances 11, 045024 (2021).

HOM damping

- Various damping schemes investigated (HOM coupler, waveguides, hybrid)
 - Enlarged-beam-pipe option won out
- Challenges: large HOM absorber, impedance, SR light collimation

[1] H.J. Zheng et al., IPAC2021, WEPAB090. [2] H.J. Zheng et al., "Design evolution of HOM damping ...", to be submitted to NIM-A.

Cavity parameters (166.6MHz)

Parameter	Value	Unit	
Frequency	166.6	MHz	
Operating Temperature	4.2	K	
R/Q	139	Ω	
Geometry factor	56	Ω	
Cavity VT voltage (Vc_VT)	1.5	MV	
Q0 at Vc_VT	≥1e9	-	
Cavity op. voltage (Vc_op)	1.1	MV	
QO at Vc_op during operation	≥5e8	-	
Epeak at Vc_op	29	MV/m	
Bpeak at Vc_VT	46	mT	
df/dp	39.2	Hz/mbar	
Tuning range	+/- 36	kHz	
RF power/cavity	170	kW	
Loaded Q	5e4	-	
HOM control	Heavy damping		

Cavities

- In-house developed, contract of 10 bare cavities signed in 10.2020
- Pre-series (3 cavities) production completed in Q1.2022
 - All 3 bare cavities passed VT tests, Cav#1-jacketed VT at 2K
 - Modified BCP implemented to eliminate unwanted traces on the LBP transition

Ferrite HOM absorber

- In-house developed
 - Inner diameter: 505mm
 - 200 tiles, 4 tiles/coupon
- 1 tile peeled off after the 10kW power test
- Brazing fixtures optimized

10kW test

Distance to defects

Fundamental power couplers

- In-housed developed, contract of 10 FPCs signed in 11.2020
- Pre-series (2 couplers) delivered in 07.2021
- High-power conditioning to 250kW CW passed in Q1.2022

T.M. Huang et al., Review of Scientific Instruments 91, 063301 (2020).

Cryomodule

- 166MHz cryomodule in-house developed
 - Two layers of magnetic field shielding (permalloy)
- 1st 166MHz cryomodule passed FAT
- First assembly scheduled in Q4.2022

500MHz SRF cavities

- Based on BEPCII 500MHz cavity, improved mechanical properties
- All 4 bare cavities delivered in Q3.2022
- CAV#1 (BCP) passed VT

H.J. Zheng et al., IEEE Trans. Appl. Supercond. 31, 3500109 (2021).

166.6MHz 260kW SSA

- Contract of one prototype signed in 10.2019
 - Passed SAT in 10.2021 (6 mos. delayed D/T COVID)
 - Accumulated on-site aging time: ~400 hours (1/336 module failed)
- Contract of 4 series SSAs signed in 11.2021
 - Scheduled delivery in Q1.2023

3kW unit

90.2

90.0

89.8

89.6

89.4

89.2

89.0

88.8

dB

Gain

Y.L. Luo et al., *IPAC2021*, TUPAB347.

LLRF

- 3rd-gen LLRF (Xilinx-FPGA) being in-house developed
 - First prototype passed essential tests in Q4.2021
 - Second prototype under development
 - Pre-series launched in Q3.2022

Integration

RF control layout

٦Г

SR RF hall

Commissioning plan

- Initial commissioning of SR with 500MHz booster NC cavities
- Demanding RF power per cavity at SR (outgassing band at ~110kW)
- Switch to SRF cavities at later stage

Darameter	Rooster	SP	Unit
Falameter	DOOSIEI	<u> </u>	Unit
Beam energy	6	6	GeV
Total energy loss (w/o IDs)	4.02	2.64	MeV
Cavity type	5-cell, copper		-
Number of cavities	3	3	-
Rf frequency	499.8	499.8	MHz
Max. available power at cavity	100	135	kW
(incl. 10% transmission loss)			
Max. FPC allowable power	120	120	kW
Forward power per cavity	100	120	kW
Beam current	4	70	mA
Total power loss to SR	16	185	kW
Wall loss per cavity	94	58	kW
Total rf voltage	5	3.96	MV
Coupling factor	1.17	2	-
Limiting factor	SSA	FPC	-

Summary

- Construction of HEPS in good shape
- RF system for HEPS under active development
- Focusing on HOM-damped 166.6MHz SRF module
 - First 166.6MHz SRF module in Q4.2022
- RF power sources
 - Prototype SSAs passed acceptance tests, series production underway
 - Booster series SSAs passed FAT, to be installed in Q4.2022
- Low-level RF
 - 1st-gen (Altera FPGA) in beam operation
 - 2nd-gen (Altera FPGA) used in various tests
 - 3rd-gen (Xilinx FPGA) under development

