

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Cavity and Cryomodules Developments for CEPC

Jiyuan Zhai (IHEP)

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022) September 14, 2022

Outline

- 1. CEPC RF parameters and new layout
- 2. RF feedback for FM CBI
- 3. Collider 650 MHz cavity and cryomodule
- 4. Booster 1.3 GHz cavity and cryomodule
- 5. Summary

CEPC Collider TDR Parameters

2 June 2022	Higgs	Z	W	ttbar			
Number of IPs	2						
Circumference [km]		100.0)				
SR power per beam [MW]		30					
Half crossing angle at IP [mrad]		16.5					
Bending radius [km]		10.7					
RF frequency [MHz]		650					
Energy [GeV]	120	45.5	80	180			
Energy loss per turn [GeV]	1.8	0.037	0.357	9.1			
Piwinski angle	5.94	24.68	6.08	1.21			
Bunch number	268	11934	1297	35			
Bunch spacing [ns]	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)			
Bunch population [10 ¹⁰]	13	14	13.5	20			
Beam current [mA]	16.7	803.5	84.1	3.3			
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71			
Beta functions at IP (bx/by) [m/mm]	0.3/1	0.13/0.9	0.21/1	1.04/2.7			
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7			
Beam size at IP (sigx/sigy) [um/nm]	14/36	6/35	13/42	39/113			
Bunch length (natural/total) [mm]	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9			
Energy spread (natural/total) [%]	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20			
Energy acceptance (DA/RF) [%]	1.6/2.2	1.3/1.7	1.2/2.5	2.3/2.6			
Beam-beam parameters (ksix/ksiy)	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1			
RF voltage [GV]	2.2	0.12	0.7				
Longitudinal tune Qs	0.049	0.035	0.062	0.078			
Beam lifetime (bhabha/beamstrahlung)[min]	39/40	80/18000	60/700	81/23			
Beam lifetime [min]	20	80	55	18			
Hour glass Factor	0.9	0.97	0.9	0.89			
Luminosity per IP[1e34/cm^2/s]	5.0	115	16	0.5			

CEPC TDR RF Parameters (Collider Ring)

30 MW SR power per beam for each mode.	ttbar				
rings, W and Z with separate cavities for two rings,	Additional	Existing	Higgs	w	Z
Z upgrade use high current 1-cell cavity with RF	5-cell	2-cell			
bypass.	cavities	cavities			
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0.	.5	5	16	115
RF voltage [GV]	10 (7.8	8 + 2.2)	2.2	0.7	0.12
Beam current / beam [mA]	3.	.3	16.7	84.1	803.5
Bunch charge [nC]	3	2	20.8	21.6	22.4
Bunch length [mm]	2.	.9	4.1	4.9	8.7
650 MHz cavity number	240	240	240	120/ring	30/ring
Cell number / cavity	5	2	2	2	1
Gradient [MV/m]	28.5	20	20	12.7	8.7
$Q_0 @ 2 K$ at operating gradient (long term)	5E10	2E10			
HOM power / cavity [kW]	0.4	0.16	0.45	0.93	2.9
Input power / cavity [kW]	194	56	250	250	1000
Optimal Q _L	1E7	7E6	1.6E6	6.4E5	7.5E4
Optimal detuning [kHz]	0.01	0.02	0.1	0.9	13.3
Cavity number / klystron	4	12	2	2	1
Klystron power [kW]	1400	1400	800	800	1400
Klystron number	60	20	120	60	60
Cavity number / cryomodule	4	6			1
Cryomodule number	60 40			30	
Total cavity wall loss @ 2 K [kW]	9.5	4	.7	1.9	0.45

CEPC Booster TDR Parameters

- Injection energy: $10 \text{ GeV} \rightarrow 20 \text{ GeV}$
- Max energy: $120 \text{ GeV} \rightarrow 180 \text{ GeV}$
- Lower emittance new lattice (TME)

Injection		tt	Н	W		Ζ
Beam energy	GeV			20		
Bunch number		35	249	1297	3978	5967
Threshold of single bunch current	μΑ	5.79 4.20 3.92				
Threshold of beam current (limited by coupled bunch instability)	mA	27				
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69
Beam current	mA	0.12	0.57	3.1	10.5	16.0
Growth time (coupled bunch instability)	ms	1690	358	67	19.4	12.5
Energy spread	%	0.016				
Synchrotron radiation loss/turn	MeV			1.3		
Momentum compaction factor	10-5			1.12		
Emittance	nm			0.035		
Natural chromaticity	H/V			-372/-269		
RF voltage	MV	531.0	230.2		200.0	
Betatron tune v_x/v_y			3	21.23/117.18		
Longitudinal tune		0.14	0.0943	0.0879		
RF energy acceptance	%	5.9	3.7	3.6		
Damping time	s	10.4				
Bunch length of linac beam	mm	0.5				
Energy spread of linac beam	%	0.16				
Emittance of linac beam	nm	10				

			tt	Н		W	Z	
	Extraction		Off axis	Off axis	On axis	Off axis	Off avia in	vication
			injection	injection	injection	injection	On axis injection	
	Beam energy	GeV	180	12	20	80	45.5	5
	Bunch number		35	249	242+7	1297	3978	5967
	Maximum bunch charge	nC	0.99	0.7	23.2	0.73	0.8	0.81
	Maximum single bunch current	μΑ	3.0	2.1	69.7	2.2	2.4	2.42
	Threshold of single bunch current	μΑ	91.5	7	0	22.16	9.57	7
	Threshold of beam current (limited by RF system)	mA	0.3]	1	4	16	
<	Beam current	mA	0.11	0.52	0.99	2.85	9.5	14.4
	Growth time (coupled bunch instability)	ms	16611	2359	1215	297.8	49.5	31.6
	Bunches per pulse of Linac		1	1		1	2	
<	Time for ramping up	s	7.3	4.	.5	2.7	1.6	
	Injection duration for top-up (Both beams)	s	30.0	23.3	32.8	39.3	134.7	128.2
	Injection interval for top-up	s	65	3	8	155	153.5	
	Current decay during injection interval				39	%		
	Energy spread	%	0.15	0.0)99	0.066	0.037	
	Synchrotron radiation loss/turn	GeV	8.45	1.	69	0.33	0.33 0.034	
	Momentum compaction factor	10-5			1.	12		
	Emittance	nm	2.83	1.1	26	0.56	0.19)
	Natural chromaticity	H/V			-372	/-269		
	Betatron tune v_x/v_y				321.27	/117.19		
<	RF voltage	GV	9.7	2.17		0.87	0.46	5
	Longitudinal tune		0.14	0.14 0.0943		0.0879	0.087	79
	RF energy acceptance	%	1.78	1.59		2.6	3.4	
	Damping time	ms	14.2	47	7.6	160.8	879	
	Natural bunch length	mm	1.8	1.	85	1.3	0.75	5
C	Full injection from empty ring	h	0.1	0.14 0.16		0.27	1.8	0.8

*Diameter of beam pipe is 55mm for re-injection with high single bunch current @120GeV.

CEPC TDR RF Parameters (Booster Ring)

30 MW Collider SR power per beam for each mode. 20 GeV injection.	ttbar	Higgs off/on-axis	W	Z high current
Extraction beam energy [GeV]	180	120	80	45.5
Extraction average SR power [MW]	0.087	0.09	0.01	0.004
Bunch charge [nC]	0.96	0.7/23.2	0.73	0.83
Beam current [mA]	0.11	0.56/0.98	2.85	14.4
Injection RF voltage [GV]	0.438	0.197	0.122	0.122
Extraction RF voltage [GV]	9.7	2.17	0.87	0.46
Extraction bunch length [mm]	1.8	1.85	1.3	0.75
Cavity number (1.3 GHz 9-cell)	336	96	64	32
Extraction gradient [MV/m]	27.8	21.8	13.1	13.8
$Q_0 @ 2 K$ at operating gradient (long term)	1E10			
Q _L	4E7	1E7		
Cavity bandwidth [Hz]	33		130	
Peak HOM power per cavity [W]	0.4	1.4/2.7	9.8	108.5
Input peak power per cavity [kW]	7.9	15.3/21.3	15	33
SSA peak power [kW] (one cavity per SSA)	10	25	25	40
Cryomodule number (8 cavities per module)	42	12	8	4

- Higgs and ttbar half fill for injection timing with Collider ring. Transient beam loading tolerable.
- Transient beam loading of the booster for Higgs onaxis (swap-out) injection tolerable.
- Standard quasi-CW TESLA cryomodules for Higgs, W and ttbar. HOM power of Higgs on-axis injection?
- Two high current 8x9-cell cryomodules for Z in each ring with RF bypass. Not the limit for booster Z beam current ramp up.
- High gradient high Q 9-cell cavities for ttbar. Narrow bandwidth high gradient cavity voltage ramping through the multipacting region to be studied.

CEPC TDR New RF Layout

Stage 1: H/W/LL-Z (and HL-H/W upgrade)

Stage 2: HL-H/W/Z (HL-Z upgrade)

Stage 3: HL-H/W/Z/ttbar (ttbar-upgrade)

- Higgs first priority. And aiming for allmode seamless switching in whole project lifecycle without hardware movement
- Maximize performance and flexibility for future circular electron positron collider
- Add center connection line (short black line) for Higgs operation after ttbar upgrade. Need to check if the dipole SR light will hit the cavity after effective shielding.

CEPC SRF TDR and Upgrade Hardware Specifications

Suitable for 30/50 MW SR per beam	H, W, Z high gradient & high Q	HL-Z high current & power	ttbar very high gradient & high Q
Collider 650 MHz Cavity at 2 K	2-cell VT 4E10 @ 22 MV/m HT 2E10 @ 20 MV/m OP 1.5E10 @ 20 MV/m	HL-Z 1-cell 1E10 @ 8.7 MV/m Optional 1-cell for H&Z VT 4E10 @ 45 MV/m HT 4E10 @ 40MV/m OP 3E10 @ 40 MV/m	5-cell VT 6E10 @ 32 MV/m HT 5E10 @ 32 MV/m OP 5E10 @ 28.3 MV/m
Booster 1.3 GHz 9-cell Cavity at 2 K	VT 3E10 @ 24 MV/m HT 3E10 @ 22 MV/m OP 1E10 @ 20 MV/m	1E10@17 MV/m	VT <mark>3E10 @ 32 MV/m</mark> HT 2E10 @ 32 MV/m OP 1E10 @ 26.7 MV/m
650 MHz Input Coupler variable	300/500 kW variable	1 MW	300 kW variable
650 MHz HOM Coupler	1 kW	١	1 kW
650 MHz HOM Absorber	5 kW	10 kW	١

Outline

- 1. CEPC RF parameters and new layout
- 2. RF feedback for FM CBI
- 3. Collider 650 MHz cavity and cryomodule
- 4. Booster 1.3 GHz cavity and cryomodule
- 5. Summary

FM Coupled Bunch Instability in Z mode

- High beam current: 800 mA @ 30 MW, 1338 mA @ 50 MW per beam.
- Relatively low cavity voltage: 0.12 GV
- Weak radiation damping: damping time ~ 410 ms
- More than 10 modes that are anti-damped.
- Has to rely on feedback system.

FM Coupled Bunch Instability in 50 MW Z Mode

RF feedback loops to suppress the strong growing modes. (Goal: growth rate < 50 s⁻¹)

Direct feedback loop will reduce the apparent impedance of the main cavities, but the calculation of growth rate shows that the direct feedback alone is insufficient.

$$Z_{
m cl}(\omega) = rac{V_{
m c}(\omega)}{I_b(\omega)} = rac{Z(\omega)}{1+e^{-i au\omega}GZ(\omega)e^{i\phi}}$$

Couple Bunch Mode Number	Growth rate [s ⁻¹]
-1	-8.4
-2	17.2
-3	41.4
-4	62.3
-5	77.4
-6	84.8
-7	84.2
-8	77.3
-9	67.2

G = 3.5

FM Coupled Bunch Instability in 50 MW Z Mode

Add double comb filter to suppress the dangerous modes.

In order to bring the growth rate below the half of the synchrotron oscillation frequency (< 50 Hz). We had to add a comb filter alongside the direct feedback loop.

$$H_{
m dual\,-\,comb}\left(\omega
ight)=rac{Gig(1-e^{-i\omega T_{
m rev}}ig)e^{-i\omega (T_{
m rev}-T_G)}}{ig[1-Ke^{-i(\omega T_{
m rev}-v_s)}ig]ig[1-Ke^{-i(\omega T_{
m rev}+v_s)}ig]}$$

$$Z_{
m cl}(\omega) = rac{Z(\omega)}{1+e^{-i au\omega}Ge^{i\phi}Z(\omega)[1+H_{
m comb}(\omega)]}$$

Couple	Growth
Bunch Mode	rate
Number	[S ⁻¹]
-1	-7.3
-2	5.0
-3	16.6
-4	26.9
-5	35.3
-6	41.6
-7	45.5
-8	47.0
-9	46.4

K =	0.5.	G =	3.	5
	\cdots ,	U	\mathcal{I}	\sim

Outline

- 1. CEPC RF parameters and new layout
- 2. RF feedback for FM CBI
- 3. Collider 650 MHz cavity and cryomodule
- 4. Booster 1.3 GHz cavity and cryomodule
- 5. Summary

High G High Q 650 MHz 1-cell Cavity

650 MHz 1-cell cavity vertical test EP treated: 2.3E10@41.6 MV/m@2 K Mid-T treated: 6.3E10@31 MV/m@2 K

Breakthrough in High Q 650 MHz Cavity

- Extremely high Q (> 1E11 up to 20 MV/m at 2 K) of several mid-T treated (900 C 3h + exposure to air + 300 C 3h + HPR) 650 MHz single cell cavities.
- Best cavity reaches the world record of 6.4E10 at 31 MV/m at 2 K.
- The lowest BCS resistance and residual resistance is only 1 nΩ or even less, significantly decreased relative to EP cavities. Similar ultra low resistance in FNAL's mid-T baked (after HPR) 1.3 GHz cavities.

High Gradient 650 MHz 1-cell Cavity

- 2nd EP in June (cold EP, 30 um, 12 C for more uniform removal) + HPR + baking at 120 C 48 h.
- 650S4 quenched at 1.5E10@41MV/m, 650S5 quenched at 2.3E10@41.6MV/m. Cold EP increased quench field.
- One of the highest gradient low frequency elliptical cavities in the world.

Locations for thickness measurement

Surface removal of the 1st EP (~ 17.5 °C)

Surface removal of 2nd EP (~ 12 °C)

CEPC 650 MHz Test Cryomodule

650 MHz 2-cell Cavity Vertical Test with HOM Couplers

- BCP 650 MHz 2-cell cavities: 2.8E10@22 MV/m (CEPC VT spec: 4E10@22 MV/m)
- Performance no change after install HOM coupler
- EP/heat treatment to further improve gradient and Q

Preserve Q₀ in Module: Magnetic Shielding and Compensating

Because of beam direction and larger beam pipe than 1.3 GHz, **only two shieldings** can reach the magnetic field requirement of high Q 650 MHz cavity: **cavity (2 K local) shield and module (RT global) shield**.

 $R_{\rm mag} = \eta \cdot S(l) \cdot (B_{\rm ext} + B_{\rm tc}) \sqrt{f}$

- 1. Flux trapping ratio: grain size, high-T annealing, fast cold down
- 2. Magnetic sensitivity: mean free path and other
- 3. Remnant magnetic field: demagnetization, magnetic shield, magnetic compensation
- 4. Thermocurrent induced magnetic field

Magnetic compensation with coils

-0.5

0.5

650 MHz High Power Variable Coupler

650 MHz variable couplers tested to CW TW 150 kW (SSA power limit), SW 100 kW (corresponding to 400 kW TW power at the window, exceeds CEPC spec 300 kW). One of the world highest variable couplers.

TW high power test to 150 kW

12:00:00

13:12:00

14-24-0

10:48:00

时间

4.00E+01 2.00E+01

0.00E+00

8.24.00

Window SW field and power

Short Plane Position (cm)

0

Window SW field and temperature rise

25

Short Plane Position (cm)

35

40

45

20

0

5

10

15

Double Notch HOM Coupler

https://doi.org/10.1016/j.nima.2019.163094

https://doi.org/10.1007/s41605-019-0143-x

Fundamental mode rejecting Q_e

Test results before and after VT are repeatable if installed correctly. In the module: HOM1 6.8E13, HOM2 1.9E13. HOM3 2.1E12. **No tuning needed.**

HOM damping Q_e

Fulfill Higgs CBI requirement. Need beam feedback for Z. Further damping optimization is under way.

Broadband High Power HOM Absorber

Due to short bunch length thus wide HOM frequency range, **SiC+AIN** composite is chosen for cavity HOM absorbing material. 5 kW high power test show high absorbing efficiency, meet CEPC spec.

SiC+AIN composite bricks brazed on copper and then on kovar plate

Measured permittivity of SiC+AIN composite (for broadband microwave absorbing)

650 MHz Cryomodule Assembly

650 MHz Cryomodule Cool Down and Testing

- DC photo-cathode gun voltage conditioned up to 400 kV
- Cavity frequency, HOM coupler double notch filter, tuner, vacuum, cryogenics perform well
- Cavity magnetic field at 2 K < 2 mG (large beam pipe North to South)
- LLRF system commissioning and high power test ongoing
 - Optimizing the outer conductor helium gas cooling of the input coupler. Cavity early quench if with poor coupler cooling.

Module automatic cool-down experiment

- 1. 300 to 150 K: < 10 K/hr. Cavity top and bottom ΔT < 20 K
- 2. 150 to 4.5 K: Cavity surface > 1 K/min
- 3. 4.5 to 2 K

Outline

- 1. CEPC RF parameters and new layout
- 2. RF feedback for FM CBI
- 3. Collider 650 MHz cavity and cryomodule
- 4. Booster 1.3 GHz cavity and cryomodule
- 5. Summary

World Leading Mid-T High Q 1.3 GHz 9-cell Cavity

2 K VT	1 st batch average	2 nd batch average
$E_{\rm acc}$ (MV/m)	24	27.7
Q ₀ @16 MV/m	3.8E10	4.1E10
Q ₀ @21 MV/m	3.8E10	4.1E10

First batch (6 cavities): N5-N10

Second batch (8 cavities): N11-N18 (N11-16 tested)

- Best Cavity (N11): 4.6E10@21 MV/m, 4.3E10@31MV/m
- Q spread due to cool down difference?
- One of the best high Q 1.3 GHz 9-cell cavities and cavity batches in the world.
- Will install to high Q module at IHEP PAPS

Mid-T Potential and Advantage

High G&Q potential: We now have 4.3E10@31MV/m of one 9-cell cavity, better than most mid-T 1-cell cavities. Need 1-cell data to go > 35 MV/m with high Q.

 Advantage: Mid-T cavities have comparable or even higher gradient and Q than Nitrogen doped cavities with less EP process: 1 EP vs 3 EPs, only bulk EP, no EP after high temperature baking, no EP after medium temperature baking. However, only cryomodule horizontal test or even beam test and long-time operation test can finally verify the mid-T feasibility.

Horizontal Test of Mid-T 9-cell Cavities

Cavity VT with helium vessel			Cavity horizontal test					
CAV#	E _{acc.max} (MV/m)	Q₀/10 ¹⁰ @ 16 MV/m	Q ₀ /10 ¹⁰ @ 21 MV/m or E _{acc.max}	E _{acc.max} (MV/m)	E _{acc.use} (MV/m)	FE onset (MV/m)	Q₀/10 ¹⁰ @ 16 MV/m	Q ₀ /10 ¹⁰ @ 21 MV/m or E _{acc.max}
N5	26.6	2.7	2.8	28	27.3	none	3.5	3.3
N7	26.7	3.2	3.1	24	24	none	3.4	3.2
N9	20.6	3.3	3.2	19.7	19	none	3.6	2.9
N10	27	3.9	3.9	26.5	20	none	3.6	3.1
Average	25.2	3.3	3.3	24.6	22.6	/	3.5	3.1

9-cell cavity with power coupler, self-excited horizontal test (not GDR mode, w/ tuner) Usable gradient: radiation < 0.5 mSv/h, 0.5 MV/m below Eacc.max, one hour stable operation

28

Horizontal Test of Mid-T 9-cell Cavities

• Tuner test at 2 K

- motor tuning range: 420 kHz (design 400 kHz)
- piezo tuning range: 3 kHz (design 1 kHz)
- tuning resolution: < 1 Hz
- LLRF commissioning
 - SEL & GDR mode
 - DOB (disturbance observer based) better than PI controller
 - optimizing loop parameters to improve field stability

1.3 GHz High Q Cryomodule

- 8 cavities, input couplers, tuners, SC magnet, BPM, cryostat, other components and tooling are near ready for module assembly
- Module cart, feed/end-cap, volve-box, SSAs, LLRF etc. will be ready soon for horizontal test in early 2023

Superconducting Magnet and Degaussing

- The magnet includes one set of quadrupole coils, two sets of correction coils and one set of heating coils with power source and quench protection system.
- Conducting cooling excitation and magnetic field test in liquid helium was done. All coils can run stably at 35 A. The magnetic field results meet the design values.
- Remnant field at 0 A is over 20 Gs at a distance of 400 mm from the end of the magnet (cavity position). After a dedicated degaussing cycle, the remnant field is less than 50 mGs. Need to degauss before each warm up of the module.

	Deremeter	l Init	Design value	Measured	
	Parameter	Unit	Design value	value@20A	
	Peak integral	-	2.0	0.0004	
	field gradient	I	2.0	2.6381	
Quadrupole	Peak field				
acil@Emm	gradient	T/m	8.67	11.6090	
coll@shim	Higher-order				
	field components		0.3%	<0.1%	
	Gradient				
	stability (r=5mm)		0.5%	<0.1%	
Correction	The				
Conection	integration of the	Tm	0.005	HC: 0.018	
Coil	bipolar field		0.000	VC: 0.017	
	Effective			HC: 238	
	length	mm	230	VC: 234	

Cryomodule Vacuum Vessel Degaussing

- Module north to south
- Before degaussing ~ 200 mG
- Degaussing on going

Summary

- CEPC SRF layout and parameters are converging to final TDR design. Consistent with CEPC physics run requirement (Higgs First, All-Mode-Switching), different from FCC-ee.
- Both 650 MHz and 1.3 GHz Mid-T high Q cavities already achieved world leading performance.
 High performance demonstration of the prototype cryomodule is the next major goal.
- Focus on optimization of the Higgs cavity and cryomodule design. Develop high current HL-Z cavity /module and high gradient high Q ttbar cavity/module concept for the future upgrade.