High-precision EW and QCD physics at FCC-ee

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e⁺e⁻ Colliders (eeFACT2022)

Paolo Franzini and Juliet Lee

B. Di Micco - Università degli Studi di Roma Tre e I.N.F.N.

FUTURE CIRCULAR COLLIDER

The SM after the Higgs boson discovery and gravitational waves observation

Einstein-Hilbert action

not observed in: e, µ, c, u, d, s

still not observed

Higgs boson couplings to ordinary matter still need to be observed !!

B. Di Micco High-precision EW and QCD physics at FCC-ee

THE AUTHOR

• Exponential expansion of the universe at the starting age, it involves one scalar ϕ with a properly shaped energy potential V(ϕ). This energy behaves like dark-energy inducing universe acceleration (inflaton field) $\phi(t) \approx const.$

The Higgs potential could have such role if its potential is properly shaped

$$V(\phi) >> \frac{1}{2}\dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3}V(\phi) \simeq const. \longrightarrow a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a}\right)$$
$$a(t) \text{ universe expansion parameter}$$

THE AUTHOR

• Exponential expansion of the universe at the starting age, it involves one scalar ϕ with a properly shaped energy potential V(ϕ). This energy behaves like dark-energy inducing universe acceleration (inflaton field) $\phi(t) \approx const.$

The Higgs potential could have such role if its potential is properly shaped

$$V(\phi) >> \frac{1}{2}\dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3}V(\phi) \simeq const. a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a}\right)$$

$$a(t) \text{ universe expansion parameter}$$

B. Di Micco High-precision EW and QCD physics at FCC-ee

THE AUTHOR

• Exponential expansion of the universe at the starting age, it involves one scalar ϕ with a properly shaped energy potential V(ϕ). This energy behaves like dark-energy inducing universe acceleration (inflaton field) $\phi(t) \approx const.$

The Higgs potential could have such role if its potential is properly shaped

$$V(\phi) >> \frac{1}{2}\dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3}V(\phi) \simeq const. a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a}\right)$$

$$a(t) \text{ universe expansion parameter}$$

B. Di Micco High-precision EW and QCD physics at FCC-ee

Substitution Starting age, it involves one scalar ϕ with a properly shaped energy potential V(ϕ). This energy behaves is the dark-energy inducing universe acceleration (inflaton field)

The Higgs potential could have such role if its potential is properly shaped

$$V(\phi) >> \frac{1}{2}\dot{\phi}^2 \longrightarrow H^2 = \frac{8\pi G}{3}V(\phi) \simeq const. \Longrightarrow a(t) \simeq e^{Ht} \quad \left(H(t) = \frac{\dot{a}}{a}\right)$$

 $V(\phi) \sim \lambda \phi^4$ λ energy scale dependence is function of M_h, M_t and the strong coupling constant at Mz

negative potential V(φ) (false vacuumm and quantum tunnelling possible) $\varepsilon = \frac{M_{Pl}^2}{2} \left(\frac{V_{\varphi}}{V} \right) <<1$ $\eta = M_{Pl}^2 \frac{V_{\varphi\varphi}}{V} <<1$ present epoch accelerated expansion

B. Di Micco High-precision EW and QCD physics at FCC-ee

It is critical for our understanding of universe evolution to measure the Higgs boson self-coupling, the Higgs, the W and the top mass with the highest possible accuracy

B. Di Micco High-precision EW and QCD physics at FCC-ee

eeFACT2022

7

FUTURE FCC-ee: Machine scheme and luminosity COLLIDER

collider properties

- double accumulator ring, energy booster for acceleration, continuous injection, crossing angle (30 mrad), crab-waist techinque for luminosity optimisation
- minimal setup 2IP, optimal one with 4 IP

proposed timeline, energies and luminosity

				\frown	\frown		\frown	
Working point	Z, years 1-2	Z, later	ww	/HZ \	tt threshold	-	and above	e
√s (GeV)	88, 9	91, 94	157, 163	240	340 - 350		365	
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	25	7	o.8		1.4	
Lumi/year (2 IP)	24 ab-1	48 ab-1	6 ab-1	1.7 ab-1	0.2 ab-1		0.34 ab-1	
Physics goal	150	ab-1	10 ab-1	5 ab-1	0.2 ab-1		1.5 ab -1	
Run time (year)	2	2	2	3	1		4	

High-precision EW and QCD physics at FCC-ee B. Di Micco

Measurement of mw

- Large number of measurements from LEP, Tevatron, LHC
- Recent CDF RunII results greatly reduce the error keeping the previous central value
- compatibility among the measurements at the 0.2% level

- the WW final state needs to be measured both in leptonic and hadronic channels to maximise statistics
- measuring the XS at a single energy point a statistical precision of 0.3 MeV on m_W can be obtained with 12 ab⁻¹ of data, beam energy spread $\Delta E_{beam} < 0.35$ MeV is needed;
- using 2 energy points $E_1 = 157.1$ GeV, $E_2 = 162.3$ GeV, $L_{int} = 12$ ab⁻¹, 40% of the luminosity at E_2 : $\Delta m_W = 0.5$ MeV , $\Delta \Gamma_W = 1.2$ MeV (stat. only.)
- It is crucial to have low beam-energy spread and accurate absolute beam energy measurement

Absolute determination of \sqrt{s}

Polarization from Polarimeter

0.002

Continuous resonant depolarisation to measure the beam energies

- electrons are transverse-polarised using Wigglers
- spin precession frequency $v_0 \sim E_{beam}$

-0.001

beams are depolarised by a kicker at frequency v_0

Depolarizer Detuning

0

45GeV, ν s=0.075, $\sigma\delta$ =0.00038, w=1.5*10^-4, ε '=2*10^-8

1 ppm accuracy on beam energy is feasible accuracy at level of 100 keV at the Z pole

0.001

High-precision EW and QCD physics at FCC-ee B. Di Micco

I OP PRODUCTION @FUU CULLIDERS

FUTURE CIRCULAR C-ee COLLIDER

B. Di Micco High-precision EW and QCD physics at FCC-ee

Electroweak precision measurements

new CDFII measurement increases tension in the fit usual border-line measurements are still there

C.T. Lu et al., Phys. Rev. D 106, 035034 (2022)

B. Di Micco High-precision EW and QCD physics at FCC-ee

Electroweak precision measurements

- new CDFII measurement increases tension in the fit
- usual border-line measurements are still there
- new incompatibilities show up :-)

C.T. Lu et al., Phys. Rev. D 106, 035034 (2022)

Electroweak precision measurements

B. Di Micco High-precision EW and QCD physics at FCC-ee

eeFACT2022

14

					∆AFB(b)	5
COL	STATISTICS		0.00156			
$\Lambda f N_F$	J <u>NG</u> ØRRELAT	רק SYSTEN	JITAN		0.00061	
$A_{FB}^{\prime} = \frac{1}{N_{FC}}$		J TION	$-ieQ^f\gamma^{\mu}$		$-ig 0_{\mu} 0_{V} 0 0 0 0 0 0 0 0$	
لحر	JGHT QUARK	FRAGMEN	TATION		$\overline{\cos\theta_W}^{\gamma}$ 0.00013	
e-	SEMILEPTON	DECAYS I	MODELLING		0.00013	
	CHARM FRAGI	NENTATION	J		0.00006	
<u> </u>	BOTTOM FRAC	SMENTATIO	N		0.00003	
$egin{array}{c} \mathcal{A}_e \ \mathcal{A}_\mu \end{array}$ 7			OR		0.00073	rrection
\mathcal{A}_{τ}	$4. \times 10^{-5}$ 2×10^{-4}	$c_V = c_L + c_R$				
\mathcal{A}_{c}	3×10^{-4}	80 >	$\times 10^{-4}$	4	C_b	
$\sin^2 \theta_{W,eff}$ (from muo $\sin^2 \theta_{W,eff}$ (from tau r	$\frac{\sin^2 \theta_{W,eff} \text{ (from muon FB)}}{\sin^2 \theta_{W,eff} \text{ (from tau pol)}} \qquad 10^{-7} \qquad 5. \times 10^{-6} \qquad 100$					
Profiting of used t	the high availab o reduce the imp	le statistics/h	ard cuts carsing θ_w natic errors $\sin^2 \theta_w$		0.02	
	LEP	FCC-ee				
statistics	s 0.00156	0.00002			0.01 - 1	
unc. sys	. 0.00061	orig. stat.				
QCD cor	r 0.00030	tagli su p⊤ ^l			0 5 10 15 20 25 30	³⁵ 40 45 <i>p</i> (GeV/ <i>c</i>)

.

B. Di Micco High-precision EW and QCD physics at FCC-ee

FUTURE CIRCUL AR COLLIDER

$sin^2\theta_{eff}$ from τ polarisation

Asymmetry parameter

$$A_f = \frac{2a_f v_f}{v_f^2 + a_f^2}$$

• At linear colliders it is possible to increase the sensitivity using longitudinally polarised beams

$$P = \frac{P_{e^-} - P_{e^+}}{(1 - P_{e^-} P_{e^+})}$$

D

• Polarisation is present also in the final state fermions, it can be measured in the τ case using the angular distribution of the decay products

example from LEP

Slide from P. Janot, Precision Calculations for future e+ ecolliders

High-precision EW and QCD physics at FCC-ee B. Di Micco

$\textbf{R}_{\mathcal{E}}$ measurement and $\alpha_{\textbf{S}}$

 $R_{\ell} = \frac{\Gamma_{\rm had}}{\Gamma_{\ell}}$

Γ_{had} is sensitive to α_S through QCD loop corrections on final state hadrons: h

 R_{ℓ} statistical precision at 3 \times 10-6 level

- allows a test of lepton universality and quark-lepton universality
- allows the extraction of α_S at m_Z

High_nrocis

Combined Z pseudo-obs.

R Di Mirco

Main systematics at LEP from detector acceptance

- can be reduced increasing the fiducial volume $|\cos(\theta)| < 0.95 \rightarrow |\cos(\theta)| < 0.995;$
- providing a clean and simple design of the forward region

¹×4.5

t FCC-ee

eeFACT2022

17

LFC21, ECT*-Trento, Sept'21

α_{S} from W decays

• QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$		uncertaintie	8
observables	extraction	exp.	param.	theor.
$\Gamma_{\rm W}^{\rm tot}, {\rm R}_{\rm W} \ ({\rm exp. \ CKM})$	0.044 ± 0.052	± 0.024	± 0.047	(± 0.0014)
$\Gamma_{\rm W}^{\rm tot}, { m R}_{ m W} ({ m CKM unit.})$	0.101 ± 0.027	± 0.0 27	(± 0.0002)	(± 0.0016)
$\Gamma_{\rm W}^{\rm tot}$, R _W (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

Slide from D. d'Entreria LFC '21 Trento

FCC-ee extraction:

- Huge W pole stats. ($\times 10^4$ LEP-2).
- Exquisite syst./parametric precision:
 - $\Gamma_{\rm W}^{\rm tot}=2088.0\pm1.2~{\rm MeV}$
 - ${\rm R}_{\rm W} = 2.08000 \pm 0.00008$
 - $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$
 - $|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$ mesons
- TH uncertainty reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

B. Di Micco High-precision EW and QCD physics at FCC-ee

32/66

Measurement of the Z mass and width

 $\sigma_{had} \left[nb \right]$

40

30

ALEPH DELPHI

L3 OPAL

10¹² expected Z bosons

- mass and width are measured using the hadronic cross section as a function of E_{cm}
- statistics error is negligible, main systematics from beam energy calibration $\Delta E_{cm} = 10 \text{ keV} (\text{stat.}) + 100 \text{ keV} (\text{syst})$

Electroweak observables

Table 3 Measurement of selected precision measurements at FCC-ee, compared with present precision. Statistical errors are indicated in boed phase. The systematic uncertainties are initial estimates, aim is to improve down to statistical errors. This set of measurements, together with those of the Higgs properties, achieves indirect sensitivity to new physics up to a scale Λ of 70 TeV in a description with dim 6 operators, and possibly much higher in specific new physics (non-decoupling) models

Observable	Present value \pm error	or FCC-ee stat.	FCC-ee syst.	Comment and leading exp. error	Observable	Present value \pm error	FCC-ee stat.	FCC-ee syst	. Comment and leading exp. error
m _Z (keV)	91186700 ± 2200	4	100	From Z line shape scan Beam energy calibration	$A_{FB}^{b}, 0 \; (\times 10^{4})$	992 ± 16	0.02	1–3	b-quark asymmetry at Z pole
$\Gamma_{\rm Z}$ (keV)	2495200 ± 2300	4	25	From Z line shape scan Beam energy calibration	$\mathbf{A}_{FB}^{pol,\tau}~(\times 10^4)$	1498 ± 49	0.15	<2	From jet charge τ polarization asymmetry
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration	τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	au decay physics Radial alignment
$1/\alpha_{\text{QED}}(\text{m}_Z^2)(\times 10^3)$	128952 ± 14	3	Small	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate	τ mass (MeV) τ leptonic	1776.86 ± 0.12 17.38 ± 0.04	0.004 0.0001	0.04 0.003	Momentum scale e/µ/hadron separation
$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	20767 ± 25	0.06	0.2–1	Ratio of hadrons to leptons Acceptance for leptons	$(\mu \nu_{\mu} \nu_{\tau})$ B.R. (%) m _W (MeV)	80350 ± 15	0.25	0.3	From WW threshold scan
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)$ (×10 ⁴)	1196 ± 30	0.1	0.4–1.6	From R_{ℓ}^Z above	$\Gamma_{\rm W}~({\rm MeV})$	2085 ± 42	1.2	0.3	From WW threshold scan
$\sigma_{\rm had}^{0}$ (×10 ³) (nb)	41541 ± 37	0.1	4	Peak hadronic cross section Luminosity measurement	$\alpha_{s}(m_{W}^{2})(\times 10^{4})$	1170 ± 420	3	Small	Beam energy calibration from R_{ℓ}^{W}
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections Luminosity measurement	$N_{\nu}(\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns
$R_{b} (\times 10^{6})$	216290 ± 660	0.3	< 60	Ratio of $b\bar{b}$ to hadrons	$m_{top} (MeV/c^2)$ $\Gamma_{top} (MeV/c^2)$	172740 ± 500 1410 ± 190	17 45	Small Small	From tt threshold scan QCD errors dominate From tt threshold scan
					$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.10	Small	QCD errors dominate From tī threshold scan
					ttZ couplings	$\pm 30\%$	0.5-1.5%	Small	From $\sqrt{s} = 365 \text{GeV} \text{run}$

B. Di Micco High-precision EW and QCD physics at FCC-ee

S,T relations

Fig. 4 Expected uncertainty contour for the *S* and *T* parameters for various colliders in their first energy stage. For ILC and CLIC, the projections are shown with and without dedicated running at the Z pole, with the current (somewhat arbitrary) estimate of future experimental and theoretical systematic uncertainty (left, from Ref. [36]); and with only statistical and parametric uncertainties (right, from Ref. [48])

processes are small, as shown in Figg 1

B. Di Micco High-precision EW and QCD physics at FCC-ee

Higgs boson couplings

B. Di Micco High-precision EW and QCD physics at FCC-ee

B. Di Micco High-precision EW and QCD physics at FCC-ee

FUTURE CIRCULAR COLLIDER Higgs mass from ZH threshold scan

Fig. 6 Expected ideal statistical uncertainties on the Higgs boson mass from the threshold cross section ratio R (Eq. 4) assuming an integrated luminosity of 5 ab^{-1} at $\sqrt{s} = 240 \text{ GeV}$ and different integrated luminosities accumulated at lower centre-of-mass energies around the ZH production threshold

Uncertainties on the Higgs mass of 6 MeV (stat.) can be obtained with 3 ab^{-1} at $\sqrt{s} = 217$ GeV

B. Di Micco High-precision EW and QCD physics at FCC-ee

Electron Yukawa coupling

- Electron Yukawa coupling can be measured using e⁺e⁻ → H → all, Γ_H = 4.1 MeV, knowledge of Higgs mass at MeV level is needed before starting the run;
- Event yield extremely low due to the low value of the electron coupling; $\sigma_{ee \to H} = 4\pi \mathcal{B}(H \to e^+e^-)/m_H^2 = 1.64 \text{ fb}$
- the beam energy spread strongly affects the cross section peak value
- initial state radiation increases the line-shape width and reduces the peak value to 0.57 fb, the beam energy spread further reduces the xs value

Target Higgs decay	Final state definition	Signal presel. efficiency (%)
$H \rightarrow b\overline{b}$	2 (excl.) jets, 1 <i>b</i> -tagged jet, no τ_{had}	80
$H \rightarrow gg$	2 (excl.) gluon-tagged jets, 0 isolated ℓ^{\pm}	50
$H \rightarrow \tau_{had} \tau_{had}$	Exactly 2 τ_{had} , 0 isolated ℓ^{\pm}	65
$H \rightarrow c\overline{c}$	2 (excl.) jets, 1 <i>c</i> -tagged jet, no τ_{had}	70
$H \to WW^* \to \ell \nu 2j$	1 isolated ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 2 (excl.) jets	~ 100
$H \to WW^* \to 2\ell 2\nu$	2 isolated oppcharge ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 0 non-isol. ℓ^{\pm} , 0 charged hadrons	~ 100
$H \rightarrow WW^* \rightarrow 4j$	4 (excl.) jets, $\geq 1 c$ -tag jets, 0 <i>b</i> -, <i>g</i> -tag jets; jets with $m_{j1j2} \approx m_W$ not both <i>c</i> -tagged, 0 τ_{had} , 0 isolated ℓ^{\pm}	70
$\mathrm{H} \to \mathrm{Z}\mathrm{Z}^* \to 2j2\nu$	2 (excl.) jets, $E_{\text{miss}} > 30$ GeV, 0 isolated ℓ^{\pm} , 0 τ_{had}	~ 100
$\mathrm{H} \to \mathrm{Z}\mathrm{Z}^* \to 2\ell 2j$	2 isolated opposite-charge ℓ^{\pm} , 2 (excl.) jets, 0 τ_{had}	~ 100
$\mathrm{H} \to \mathrm{Z}\mathrm{Z}^* \to 2\ell 2\nu$	2 isolated oppcharge ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 0 non-isol. ℓ^{\pm} , 0 charged hadrons	~ 100
$H \rightarrow \gamma \gamma$	2 (excl.) isolated photons	~ 100

eeFACT2022

BSM sensitivity

Fig. 5 Electroweak (red) and Higgs (green) constraints from FCC-ee, and their combination (blue) in a global EFT fit. The constraints are presented as the 95% probability bounds on the interaction scale, $\Lambda/\sqrt{c_i}$, associated to each EFT operator. Darker shades of each colour indicate the results when neglecting all SM theory uncertainties

B. Di Micco High-precision EW and QCD physics at FCC-ee

Flavour physics at FCC-ee

- FCC-ee is a Z⁰ factories, a huge number of C, B mesons and τ mesons are produced through the decay of 10¹² Z⁰ bosons
- FCC-ee provides the richness and the statistics of hadronic final states of LHCb and the clean environment of e+e- colliders as Belle-2

Particle species	B^0	B^+	B_s^0	Λ_{k}
Yield $(\times 10^9)$	310	310	75	65

0.00

0.02

• New physics can be parametrised as contribution to the B⁰ mixing matrix element M₁₂ d, s u, c, t bb u, c, t d, s u, c, t u, t u, c, t u, c, t u, c, t u, t

 $M_{12} = (M_{12})_{\rm SM} \times (1 + he^{2i\sigma})$

B. Di Micco High-precision EW and QCD physics at FCC-ee

h_d

0.06

0.08

0.04

QCD physics at e⁺e⁻

e+e- collisions provide a clean environment also for QCD measurements

Advantages compared to p-p collisions:

- QED initial-state with known kinematics
- Controlled QCD radiation (only in final-state)
- Well-defined heavy-Q, quark, gluon jets
- Smaller non-pQCD uncertainties:
- no PDFs, no QCD "underlying event",...

Direct clean parton fragmentation & hadroniz.

Plus QCD physics in γγ (EPA) collisions:

High precision gluon and jet studies

- Exploit FCC-ee H(gg) as a "pure gluon" factory: $H \rightarrow gg$ (BR~8% accurately known) provides – O(100.000) extra-clean digluon events.
- Multiple handles to study gluon radiation & g-jet properties:
- Gluon vs. quark via H→gg vs. Z→qq
 (Profit from excellent g,b separation)
- Gluon vs. quark via Z → bbg vs. Z → qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).
- Vary E_{jet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
- Vary jet radius: small-R down to calo resolution
- Multiple high-precision analyses at hand:
- <u>BSM</u>: Improve q/g/Q discrimination tools
- <u>pQCD</u>: Check NⁿLO antenna functions. High-precision QCD coupling.
- <u>non-pQCD</u>: Gluon fragmentation: Octet neutralization? (zero-charge gluon jet with rap gaps). Colour reconnection? Glueballs ? Leading η's,baryons?

eeFACT2022

jet substructure

 $\lambda_{\beta}^{\kappa} = \sum z_i^{\kappa} \theta_i^{\beta},$

(normalized $E^n \times \theta^n$ products)

31

00000000

t

Color reconnection

Colour reconnection among partons is source of uncertainty in m_w, m_{top}, aGC extractions in multijet final-states. Especially in pp (MPI cross-talk).

- CR impacts all FCC-ee multi-jet final-states (potentially shifted angular correlations):
 – e⁺e⁻ → WW(4j), Z(4j), ttbar,
 – H(2j,4j) CP studies,...
 – String-drag effect on W mass (Hinted at LEP: No-CR excluded at 99% CL).
 - Exploit huge W stats (×10⁴ LEP) to "turn the m_w measurement around": Determine m_w leptonically and constrain CR in hadronic WW: Colour reconnection controlled to <1%</p>

- FCC-ee has a rich and striking physics goal
- improving accuracy of EWK measurement by factors 10-100
- constraints Higgs potential related parameters m_H , m_t , $m_{W, K\lambda}$
- providing the best measurement of the Higgs boson potential (check validity of the Higgs boson as inflation field, probe the vacuum instabilities, probe the nature of the Higgs boson)
- if you think that a 27 km muon collider could be a valuable option after HL-LHC, think what could be a 100 km muon collider if a working muon cooling mechanism will be available at the end of the FCC-ee running

Table 2 Precision on the Higgs boson couplings from Ref. [37], in the κ framework without (first numbers) and with (second numbers) HL-LHC projections, for the FCC-ee and the complete FCC integrated programme (including both the FCC-hh and the FCC-ep option) [38]

Collider	HL-LHC	FCC-ee _{240\rightarrow365}	FCC-INT
Lumi (ab ⁻¹)	3	5 + 0.2 + 1.5	30
Years	10	3 + 1 + 4	25
g _{HZZ} (%)	1.5	0.18/0.17	0.17/0.16
g _{HWW} (%)	1.7	0.44/0.41	0.20/0.19
g _{Hbb} (%)	5.1	0.69/0.64	0.48/0.48
g _{Hcc} (%)	SM	1.3/1.3	0.96/0.96
g _{Hgg} (%)	2.5	1.0/0.89	0.52/0.5
g _{Hττ} (%)	1.9	0.74/0.66	0.49/0.46
g _{Hµµ} (%)	4.4	8.9/3.9	0.43/0.43
$g_{\rm H\gamma\gamma}$ (%)	1.8	3.9/1.2	0.32/0.32
$g_{\mathrm{HZ}\gamma}$ (%)	11	-/10	0.71/0.7
g _{Htt} (%)	3.4	10./3.1	1.0/0.95
g _{HHH} (%)	50	44/33	3–4
		27/24	
Γ _H (%)	SM	1.1	0.91
BR _{inv} (%)	1.9	0.19	0.024
BR _{EXO} (%)	SM (0.0)	1.1	1

B. Di Micco High-precision EW and QCD physics at FCC-ee