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The Beijing Electron-Positron Collider ( BEPC )
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1990

2010

2030

BEPCI /BESI-II 
（1031cm-2s-1）

BEPCII/BESIII
(1033cm-2s-1 )

A completely new 
e+e- collider: a super 
tau-charm facility ? 

~ 1035 cm-2s-1

Tau-charm energy region : 2-5 GeV
No room at BEPCII 
for significant 
upgrade 



The Super Tau-Charm Facility in China ( STCF ) 
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vSTCF: a natural extension of the Beijing Electron-Positron Collider 
(BEPC II) and a viable option for a post-BEPCII HEP project in 
China. 

An super t-c machine far beyond BEPCII 

• Extended energy region: Ecm = 2-7 GeV

• Super high luminosity: L >0.5´1035 cm-2s-1@4 GeV

• Linac injector: ~300 m, storage ring: ~600 m

• Large Piwinski angle & Crab waist

• Potential for luminosity upgrade and a polarized 
electron beam



STCF Project Activities
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n International workshops on Future Tau-Charm Factories
• 2015 USTC
• 2018 UCAS (March),  Novosibirsk (May),

Orsay (December)
• 2019 Moscow (September)
• 2020 Online (November)
• 2021 Online (November)

n Working groups and routine group meetings



STCF Project Timeline ( ideal )
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2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031-2040 2041-2042

CDR
TDR

Construction
Data taking

Upgrade

n Conceptual design studies 
have been largely finished. 
Three volumes of CDRs are 
being under review and will 
be released soon.

n Moving to the TDR stage with strong support from USTC and local governments.
• Anhui province, Hefei city and USTC have agreed in principle to jointly fund a 

full R&D program for the STCF project.  Details are being worked out. 



STCF Detector Concept  
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缪子探测器 轭铁 超导磁铁 电磁量能器

内径迹探测器
外径迹探测器

粒子鉴别器

~ 6 m

~ 7 m

Electromagnetic Calorimeter Muon Detector

Particle Identification Detector
Inner Tracker Central Tracker

Magnet



Physics Requirements
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v Highly efficient and precise reconstruction of exclusive 
final states produced in 2-7 GeV e+e- collisions

Precise measurement of low-p particles → low mass

Excellent PID：π/Κ and µ/p separation up to 2 GeV



Experimental Conditions
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v Interaction region and 
machine detector interface

Boundaries defined for the 
detector system: beam pipe 
diameter of 6 cm, opening 
angle of 300 … 

v Beam-induced backgrounds have to be fully simulated and  
carefully evaluated. 

Luminosity backgrounds: radiative BhaBha scattering, two-photon process 
Single-beam backgrounds: Thouschek scattering, beam-gas interaction, 
synchrotron radiation, injection background 



Beam-induced Backgrounds
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TID NIEL Counting  rate

Inner most detector layer： ~3.5 kGy/y,  ~1012 1MeV n-eq/cm2/y,  ~1 MHz/cm2



缪子探测器 轭铁 超导磁铁 电磁量能器

内径迹探测器
外径迹探测器

粒子鉴别器

~ 6 m

~ 7 m

General Considerations for the Detector Design
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v Highest energy available 5 → 7 GeV : 
pushing up PID momentum range.  

Plastic scintillator/MRPC TOF detectors → 
Cherenkov detectors

Thicker iron yoke is needed

v Peak luminosity 1033 → 1035 cm-2s-1：
significantly pushing up radiation background 
level. 

Inner tracker : wire chamber → high-rate 
tracking detector options  
EMC: CsI(Tl) → fast crystal ( pure CsI )
Streamer-mode RPC → avalanche-mode RPC + 
scintillator strips 

BESIII Detector

STCF Detector



The STCF Detector Conceptual Design 
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Solid Angle Coverage : 94%•4p (𝜃~200)

v Inner tracker
MPGD: cylindrical 𝛍RWELL

Silicon: CMOS MAPS

vCentral tracker
Drift chamber

vPID
Barrel: RICH

Endcaps: DIRC-like TOF (DTOF)

vEMC
pure CsI + APD

vMuon detector
Bakelite RPC + scintillator strips 



Inner Tracker - 𝛍RWELL Option 
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𝛍RWELL: micro resistive WELL detector   Cylindrical 𝛍RWELL tracking chamber

vThree cylindrical layers
Located at 6cm, 11cm, 16 cm

Material budget / layer: 0.25% X0

2D XV strip readout, 0.4mm pitch 

Hit rate up to 1 MHz/cm2



Performance Simulation and Design Optimization
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Position reconstruction algorithm
charge centroid + micro-TPC
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Parameters Optimization

Optimized configuration
• Working gas: Ar:CO2 = 85:15
• Drift field: 500 V/cm
• Drift gap: 5 mmOccupancy with strip readout needs to be further examined. 



𝛍RWELL Detector R&D
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Major challenges: high rate, cylindrical shape 

A fast-grounding layout 
for large area fabrication

cylindrical 𝛍RWELL structure design and engineering 

High-rate 𝛍RWELL prototype development 



Inner Tracker – CMOS MAPS Option
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Aiming for a low-
power chip design 

(required for a low-
mass system) with 
timing capability 

TJ 180nm CIS 



Central Tracker – Main Drift Chamber
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n A lot of simulation performed to optimize 
the drift chamber design：

• Square cell：9.8～14.5 mm
• 48 wire layers arranged in 8 super layers
• Sense (field) wire：W(Al), 20(100)µm in diameter
• Working gas：He/C3H8 (60/40）
• Total material budget: 4% (walls included)Hit rate at the inner most layer ~ 400 kHz/channel 

→ a big challenge for readout electronics



Expected Performance of the tracking system 
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Particle Identification
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vBarrel : A RICH detector using MPGD for photon detection (TOF technology no 
longer feasible for PID up to 2 GeV due to short distance of flight)

vEndcaps : A DIRC-like high-resolution TOF detector is proposed (TOF option is 
possible thanks to the longer distance of flight) .



The RICH Detector
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v Radiator: liquid C6F14 with n ~ 1.3
v THGEM+MM with CsI photo cathode 
v Simulated number of photon electrons ~ 10 
v Total material budget < 0.3X0

• 𝑲/𝝅 > 4 𝝈 @2.0GeV/c
• 𝑲/𝒑 > 4 𝝈 @ 2.0GeV/c
• potential for 𝝅/𝜇 in 

0.3-0.5GeV/c

A RICH prototype with quartz radiator

A RICH prototype with C6F14

Development of readout chip and electronics 



The DTOF Detector
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v Detector design has been deeply optimized
quartz plate size and thickness, surface treatment, 
MCP-PMT coupling

𝜋/𝜥 ~ 4 𝝈 @2GeV
The PID performance can be further enhanced by 
combining timing and spatial pattern of photon hits

• A DTOF prototype and 
readout electronics were 
developed and tested 
with cosmic rays. 

• Time resolution < 30 ps

Length of propagation is calculated for 
each detected photon. TOF is then 
reconstructed from arrival times 
measured of all detected photons. 



Electromagnetic Calorimeter
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n A crystal calorimeter using pCsI ( short decay 
time of 30ns ) to tackle the high background 
rate (~ 1 MHz/crystal )

pCsI has a very low light 
yield of 3.6% → a major R&D 
task : enhance light yield 

Energy resolution～
2% @1GeV

Position resolution～
5 mm @1GeV

Simulation assuming a light 
yield of 100pe/MeV

• crystal size：28cm (15X0), 5×5cm2

• defocused layout： 6732 crystals in 
barrel，1938 crystals in endcaps
• 4 large area APDs to address low light 

yield: 4×(1×1cm2)



Pileup mitigation and detector R&D
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n Development of waveform digitization 
electronics (CSA + shaper + ADC)

n Light yield studies n Waveform fitting with 
multiple templates

Very effective in mitigating 
the pileup effect

Light yield reached up 
to 155 p.e./MeV

Dynamic range：
3 MeV ~ 3 GeV
ENE：~ 1 MeV
Time resolution :
< 200 ps@1GeV

reflector：225um thick Teflon 



The Muon Detector
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n A hybrid design with Bakelite RPC and scintillator 
strips for optimal overall performance

• RPC for inner layers : not sensitive to background

• Scintillator for outer layers: sensitive to hadrons 

n Key design parameters have been optimized based 
on simulation of muon identification performance

• Inner 3 RPC layers + outer 7 scintillator layers

• Taking neutral hadron identification into account 

Using BDT combining the muon detector and EMC



Detector Summary 
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MDC
• sxy< 130 µm
• sp/p ~ 0.5% @ 1 GeV
• dE/dx~6%

ITk
• < 0.25%X0 / layer 
• sxy< 100 µm

PID
• p/K (and K/p) 3-4s

separation up to 2GeV/c

EMC 
E range: 0.025-3.5GeV
sE (%) @ 1 GeV
Barrel:             2 .5
Endcap:             4     
Pos. Res. :          5 mm
MUD
• 0.4 - 2 GeV
• p suppression >30

Cylindrical 𝛍RWELL
CMOS MAPS

Cylindrical 
Drift chamber 

RICH with MPGD
DIRC-like TOF

pCsI + APD

RPC + scintillator 



STCF Physics Program
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- Leading role
- Competing with Belle II/LHCb
- Complementary to BelleII/LHCb/Eic/EicC



Expected Data Samples at STCF
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Data samples produced per year

XYZ Factory 

n High detection efficiency and low background for
production at threshold

n High detection resolution, kinematic constraining
n Unexplored opportunities at 5-7 GeV

Light meson Factory

Hyperon Factory



Expected Sensitivities
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*Sensitivity estimated based on ℒ = 1 ab!"



Collins Fragmentation Function (FF)
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J. C. Collins, Nucl. Phys. B396, 161 (1993)

H1: Collins FF
→ describes the fragmentation of a transversely polarized quark into a spin-less hadron h.
→  leads to an azimuthal modulation of hadrons around the quark momentum.

Transversely 
polarized 
quark

Collins function

[1] B. L. Wang et al., Journal of UCAS 38 (2021) 433

• The statistical uncertainty asymmetry AUL  with 1ab!"
at 7 GeV[1]:
Ø (1.4~4.2)×10!# for 𝜋𝜋𝑋
Ø (3.5~20)×10!$ for 𝐾𝐾𝑋

• 2% precision required by EicC



D(s) (Semi-)Leptonic decay
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Purely Leptonic:

Semi-Leptonic:

Direct measurement : |Vcd(s)| x fD(s) or |Vcd(s)| x FF
p Input fD(s) or fk(p)(0) from LQCD  Þ |Vcd(s)|
p Input |Vcd(s)| from a global fit  Þ fD(s) or fk(p)(0) 
p Validate LQCD calculation of Input fB(s) and provide constrain of CKM-unitarity

𝐷#$ → 𝜇$𝜈% 𝐷!" → 𝜏"𝜈#

H.J. Li, J. J. Liu et al., Eur.Phys.J.C 82 (2022) 4, 310; 337



Probing CP Violation
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v In Hyperon Decay • In tau Decay

• In 𝑲𝟎 − ,𝑲𝟎 Mixing• In Charm Decay

CPT test: 𝜙± = 𝜙%% = 𝜙& = tan'( )∆+&
∆,&

With 1 trillion 𝐽/𝜓, 𝐽/𝜓 → 𝐾'𝜋"𝐾% +
𝑐. 𝑐. , Δ𝜙±~0. 05° (PDG: 0. 5°)

Quantum coherence of 𝐷% and 7𝐷0

𝛬 is transversely polarized
CP test via 
4 trillion J/y events Þ 𝑨𝑪𝑷~𝟏𝟎'𝟒

𝑨𝑪𝑷=
𝜶# + 𝜶$
𝜶# − 𝜶$

Complementary to 
Kaon decay with P-
wave transition [1] H. Y. Sang, et al., CPC 45, 053003 (2021) 

CPV sensitivity with 1ab-1 @ 4.26 
GeV[1]: 𝐴6789~9.7×10':

The CPV source in 𝑲𝟎 − 7𝑲𝟎 mixing produces a difference 
in 𝜏 → 𝐾!𝜋𝜈 decay rate:



Summary

32

v STCF is a super tau-charm factory proposed by the Chinese HEP 
community as one of the post-BEPCII HEP projects in China. 

Ecm = 2 – 7 GeV, L > 0.5´1035 cm-2s-1@4 GeV

v Many activities promoting the project at home and abroad, and 
conducting design studies and detector R&D.

v Intensive conceptual design studies in the past few years have 
resulted in 3 volumes of CDRs covering physics, detector and 
accelerator. 

v The project is moving on to the TDR stage with strong support from 
local governments and USTC.  International collaboration is 
essential for realizing the project.  


