Longitudinally polarized colliding beams at CEPC

Zhe Duan

On behalf of CEPC Beam Polarization Working Group 2022. 09. 13

65th ICF Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022), September 12-15 2022

- Physics design:
 - Tao Chen, Zhe Duan, Hongjin Fu, Jie Gao, Sergei Nikitin (BINP), Dou Wang, Jiuqing Wang, Yiwei Wang, Wenhao Xia(graduated)
- Polarized electron source & linac:
 - Xiaoping Li, Cai Meng, Jingru Zhang
- Polarimeter:
 - Shanhong Chen, Yongsheng Huang, Guangyi Tang

- Discussions with D. P. Barber (DESY) on polarization theories and simulations are illuminating.
- Helpful discussions with E. Forest (KEK) & D. Sagan (Cornell) on usage of Bmad/PTC are acknowledged.

Motivation of CEPC polarized beam program

Vertically polarized beams in the arc

- Beam energy calibration via the resonant depolarization technique
- Essential for precision measurements of Z and
 W properties
- At least 5% ~ 10% vertical polarization, for both

Longitudinally polarized beams at IPs

- Beneficial to colliding beam physics programs at Z, W and Higgs
- Figure of merit: Luminosity * f(Pe+, Pe-)
- ~50% or more longitudinal polarization is desired, for one beam, or both beams

- Supported by National Key R&D Program 2018-2023 to design longitudinally polarized colliding beams at Z-pole.
- The study in this presentation is based on CEPC CDR lattice & parameters.
- Will be included as a Chapter in the Appendix in the CEPC TDR.

Self-polarization vs injection of polarized beams for the collider ring

- Decay mode
 - $P(t) = P_{\text{ens,DK}} (1 e^{-t/\tau_{\text{DK}}}) + P_{\text{inj}} e^{-t/\tau_{\text{DK}}},$ $- \frac{1}{\tau_{DK}} = \frac{1}{\tau_{BKS}} + \frac{1}{\tau_{\text{dep}}}, \frac{1}{\tau_{BKS}[s]} \approx \frac{2\pi}{99} \frac{E[\text{GeV}]^5}{C[\text{m}]\rho[\text{m}]^2},$ $- P_{\text{ens,DK}} \approx \frac{92\%}{1 + \tau_{BKS}/\tau_{\text{dep}}}$

- Top-up injection
 - $P_{\text{avg}} \approx \frac{P_{\text{ens,DK}}}{1 + \tau_{\text{DK}}/\tau_{\text{b}}} + \frac{P_{\text{inj}}}{1 + \tau_{\text{b}}/\tau_{\text{DK}}}$
 - If $\tau_b \gg \tau_{DK}$, then $P_{avg} \approx P_{ens,DK}$
 - If $\tau_{DK} \gg \tau_b$, then $P_{avg} \approx P_{inj}$
- In new e+e- circular colliders, a longer τ_b suggests a lower luminosity
- Injection of polarized beams is required to reach a high Pavg without sacrificing luminosity
 - Key: mitigate radiative depolarization (to achieve a longer $\tau_{\rm dep}$) to maintain $\tau_{DK} \gg \tau_b$
 - More challenging at higher beam energies at CEPC

CEPC CDR parameters	45.6 GeV (Z, 2T)	80 GeV (W)	120 GeV (Higgs)
$ au_b$ (hour)	2.5	1.4	0.43
$ au_{BKS}$ (hour)	256	15.2	2.0
$P_{\text{ens,DK}}$ required to realize $P_{\text{avg}} \ge 50\%$, if $P_{\text{inj}} = 80\%$	0.6%	5%	11%

Longitudinal polarization @ CEPC

- In the injector: preparation and maintenance of highly polarized e- (e+) beam(s).
 - Polarized source: polarized e- gun (specs defined), polarized e+ source (preliminary study)
 - Booster: polarization maintenance (underway)
 - Transfer lines: ensure the matching of polarization directions (to be studied)
- In the collider ring:
 - spin rotators > longitudinal polarization[1] (done)
 - ensure $\tau_{DK} \gg \tau_b$, then $P_{avg} \approx P_{inj}$
 - Compton polarimeter[2] (under way)

W. H. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
 S. H. Chen et al., JINST 17, P08005, (2022)

Polarized e-/e+ source for > 50% polarization

g

Fesla; orbit, 5

ield. 2

6

3

-2

-2000

-1500

•	Polarized e-	source	is m	natured	technol	ogy
---	--------------	--------	------	---------	---------	-----

Parameter	ILC(TDR)	CLIC(3TeV)	CEPC
Electrons/microbunch	2×10 ¹⁰	0.6×10 ¹⁰	>0.94×10 ¹⁰
Charge / microbunch	3.2nC	1nC	1.5nC
Number of microbunches	1312	312	1
Macropulse repetition rate	5	50	100
Average current from gun	21µA	15µA	0.15μΑ
Polarization	>80%	>80%	>80%

Parameters of CEPC polarized electron source			
Gun type	Photocathode DC Gun		
Cathode material	Super-lattice GaAs/GaAsP		
HV	150-200kV		
QE	0.5%		
Polarization	≥85%		
Electrons/bunch	2×10 ¹⁰		
Repetition rate	100Hz		
Drive laser	780nm (±20nm), 10µJ@1ns		

- A polarizing/damping ring for e+, using high-field asymmetric wigglers [1]
 - Detailed design study is under way
 - Low-emittance lattice design w/ very strong wigglers An asymmetric wiggler @BESSY-II as WLS,

A. M. Batrakov, et al., APAC 2001, pp251-253.

central pole

magnetic field

-1000

-500 0 500 1000

longitudinal coordinate, mm

BESSY-II WLS B=7 Tesla

correctors

1500

2000

orbit

side poles

Parameter	Value
beam energy(GeV)	2.5
circumference(m)	240
wiggler total length(m)	22
$B_{+}/B_{-}(T)$	15/1.5
$U_0(\text{MeV})$	3.5
$\tau_{BKS}(s)$	20
rms energy spread	~ 0.003
natural emittance(nm)	~ 25
damping time(ms)	~ 1
momentum compaction factor	0.001
RF voltage(MV)	4.8
bunch length(mm)	12.6
bunch number	200
bunch spacing(ns)	4
beam current(mA)	< 600
bunch charge(nC)	< 2.5
beam store time(s)	>20
beam polarization before extraction	>58%

Tentative parameters

6

Polarization maintenance in synchrotron/booster

- $J_s = \vec{S} \cdot \vec{n}$ is an adiabatic invariant
- $v_0 \approx a\gamma_0$ and \vec{n}_0 changes during acceleration. When crossing a spin resonance, $|J_s|$ could vary due to non-adiabaticity, leading to depolarization described by Froissart-Stora formula[1]:
 - Two factors: spin resonance strength ε and acceleration rate $\alpha \sim 10^{-6} \frac{dE}{dt} [\text{GeV/s}]C[\text{km}]$
 - Polarization is maintained ($\Delta P < 1\%$) if
 - Fast crossing: $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.06$
 - Slow crossing: $\frac{\epsilon}{\sqrt{\alpha}} \gg 1.82$, spin flip

Spin resonance structure

Parameter of CEPC CDR Booster	Value
P: number of periodicities	8
M: number of unit cells in each arc region (per period)	99
v_y : total betatron phase advance/(2 π)	261.2
v_B : total betatron phase advance in arc regions/(2 π)	198

- PM = 792, arc sections take up > 80% circumference
- About k * 2π betatron phase advance in each straight section & arc section

	Super strong	Less strong	Regular
Imperfection resonance	$v_0 = nPM \pm [v_B]$	$v_0 = nP \pm [v_y]$	$v_0 = n$
Intrinsic resonance	$ u_0 = nP \pm v_y$ near $nPM \pm [v_B]$	$v_0 = nP \pm v_y$	$v_0 = n \pm v_y$

 ϵ_{RING} = Enhancement Factor * $\epsilon_{arc cell}$ + $\epsilon_{straight sections}$

• Enhancement Factor :
$$\zeta_M(x) = \frac{\sin M\pi x}{\sin \pi x}$$
, when x = integer, $\zeta_M(x) = M$

For intrinsic resonances

$$\varepsilon_{K} \approx \frac{1+G\gamma}{2\pi} \sqrt{\frac{\varepsilon_{N}}{\pi\gamma}} \left\{ E_{P}^{+} [E_{M}^{+} \left(g_{F} \sqrt{\beta_{F}} - g_{D} \sqrt{\beta_{D}} e^{\frac{i^{K+\nu_{B}}}{MP}} \right) + X_{ins} \right] + E_{P}^{-} [E_{M}^{-} \left(g_{F} \sqrt{\beta_{F}} - g_{D} \sqrt{\beta_{D}} e^{\frac{i^{K-\nu_{B}}}{MP}} \right) + X_{ins}]$$
• Enhancement factor: $E_{P}^{\pm} \approx \zeta_{P} \left(\frac{K \pm \nu_{Z}}{P} \right)$; $E_{M}^{\pm} \approx \zeta_{M} \left(\frac{K \pm \nu_{B}}{PM} \right)$

[1] S. Y. Lee, Spin Dynamics and snakes in synchrotrons, World Scientific, 1997, [2] V. Ranjbar, et al., PRAB 21, 111003 (2018)

Intrinsic spin resonance structure

CEPC CDR Booster : $P = 8; M = 99; v_B = 198$

Imperfection spin resonance structure

Error setting in the lattice, rms vertical closed orbit is \sim 100 μ m in this seed

Simulation of polarization transmission to 45.6 GeV

Simulation of polarization transmission to 120 GeV

Short summary on polarization maintenance in booster

Findings:

- A large ramping rate of spin precession frequency α, due to the large circumference
- Spin resonances are generally weak, due to the high periodicity & cancellation
- Depolarization is negligible, in the fast crossing regime $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.1$, up to 45.6 GeV
- The strong intrinsic resonance at ~ 87 GeV leads to large depolarization, and hurts the polarization transmission up to 120 GeV, potential mitigations:
 - A new lattice with the first strong intrinsic resonance larger than 120 GeV
 - $-\,$ Control the vertical equilibrium beam emittance to below ~ 4 pm (coupling ~ 0.1%)

Spin rotators in the collider ring at Z-pole

- Solenoid-based spin rotator + anti-symmetric arrangement [1,2,3] (W. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2)
 - Successfully implemented in the collider ring lattice
 - Now focus on Z-pole, extendable to cover higher beam energies using interleaved solenoid+dipole scheme [4]

Spin rotators @ Z-pole

• Solenoid-based spin rotators

(1985) 243.

- Integral solenoid field strength = 240 T m @ 45.6 GeV
- Utilize the solenoid decoupling model developed for HERA [1]
- Each solenoid section contains two modules (~100 m total length)

Spin rotators @ Z-pole

- Anti-symmetric arrangement [1,2,3]
 - θ_c =2*16.5 mrad, rather than the ideal value 2*15.17 mrad
 - Angle compensation sections $\Delta \theta_1$ (1.39mrad) and $\Delta \theta_2$ (2.65mrad)
 - $a\gamma(\theta_u + \Delta \theta_1 + \Delta \theta_2) = -\frac{\pi}{2}$ $a\gamma(\theta_d + \Delta \theta_1) = \frac{\pi}{2}.$
 - Straight sections (SS) w/o solenoids

[1] I. Koop, Ideas for longitudinal polarization at the Z/W/H/top factory, eeFACT 2018.

- [2] S. Nikitin, Opportunities to obtain polarization at CEPC, IJMPA, 34, 194004 (2019)
- [3] S. Nikitin, Polarization issues in circular electron-positron super-colliders, IJMPA, 35 (2020).

Performance evaluation: orbital motion

- Changes in optics parameters
 - Increase of circumference ~ 2.8 km, can be optimized.
 - Increase of integer betatron tunes by 18 units

Table 1 The comparison of several key orbital parameters between the insertion scheme and the CDR lattice at the Z-pole

	CDR Lattice	Solenoids On	Solenoids Off
Tunes $\nu_x/\nu_y/\nu_z$	363.11/365.22/0.028	381.11/383.22/0.028	381.11/383.22/0.028
Emittances ϵ_x/ϵ_z	$0.18~\mathrm{nm}/0.886~\mu\mathrm{m}$	$0.18~\mathrm{nm}/0.886~\mu\mathrm{m}$	$0.18~\mathrm{nm}/0.886~\mu\mathrm{m}$
Momentum compact factor α_p	$1.11 imes10^{-5}$	$1.07 imes 10^{-5}$	$1.07 imes 10^{-5}$
Circumference (m)	100016.35	102841.95	102841.95
SR energy loss per turn U_0 (MeV)	35.47	35.91	35.91
β -function at IPs $\beta_x^{\star}/\beta_y^{\star}$	0.2/0.001	0.2/0.001	0.2/0.001

• Dynamic aperture shrinks a bit, but further optimization using more sextupole families could help recover.

Performance evaluation: polarization

Bmad/PTC simulations show:

- Weak dependence of \hat{n}_0 over energy in the working energy range
- Errors in solenoid sections lead to enhanced but acceptable depolarization near first-order spin resonances
 - Rms relative field error of 5e-4 for solenoids & quadrupoles, roll error of 1e-4 for quadrupoles.
- A sufficient large safe region exists, that enables $\tau_{DK} \gg \tau_b$ thus $P_{avg} \approx P_{inj}$, when higher-order spin resonances are also considered

$$- P_{\text{avg}} \approx P_{\text{inj}} / (1 + \frac{92\%}{P_{\text{eq}}} \frac{\tau_b}{\tau_{BKS}}), \tau_b \sim 2 \text{ hours, } \tau_{BKS} \sim 260 \text{ hours, if } P_{\text{eq}} = 7\%, \text{ then } P_{\text{avg}} \approx P_{\text{inj}} / 1.1$$

Influence of machine imperfections

- Monte-Carlo simulations [1] with BMAD/PTC of an imperfect lattice seed after dedicated orbit & optics correction[2] to reach the desired orbital performance.
 - Assumed vanishing BPM offset, the rms closed orbit is < 50 $\mu m.$ (Study of more conservative setting is under way.)
 - Detector solenoids & anti-solenoids not included.
- Radiative depolarization due to machine errors becomes much severe at higher energies like 120 GeV, dedicated "closed-orbit harmonic spin matching" [3] looks mandatory as a potential mitigation.

[1] W. H. Xia, et al., arXiv:2204.12718. [2] B. Wang et al., IPAC 2021, TUPAB007 [3] R. Rossmanith and R. Schmidt, NIM A 236 231, (1985).

Implications for resonant depolarization application

- Scenario 1: using self-polarization [1]
 - Asymmetric wigglers are required to boost self-polarization build-up at Z-pole, not needed at W
 - ~100 non-colliding bunches at Z-pole, depolarize and refill one every ~ 10 min
 - ~2 hours with wigglers on to polarize non-colliding bunches, not for physics data taking
 - Very short lifetime ~15 min limited by the 6D dynamic aperture, considering the energy spread & bunch length increase w/ wigglers[2]
 - A much smaller bunch charge for RD -> worse statistical error of polarimeter

Implications for resonant depolarization application

- Scenario 2: Injection of polarized e+/e- bunches
 - Source
 - Polarized e- gun
 - Prepare the polarized e+ bunch in the positron damping ring
 - Use the ~6 min vacancy of injector for filling colliding e+/e- bunches
 - − 10%~20% self-polarization within 5 min -> $\tau_{DK} \leq 20$ min, do-able with addition of moderate-strength asymmetric wigglers, or using higher-field dipoles and/or higher beam energy
 - Acceleration in the booster could well preserve the polarization, without additional hardware.
 - This approach is not hindered by the problems of Scenario 1, and directly measure the energies of colliding bunches
 - Pave the way for alternative beam energy measurement scheme, like the "beam free-precession" concept[1].
 - 1. Inject ~ 12000 polarized e- and unpolarized e+ bunches
 - Start colliding beam experiments

[1] I. Koop, IAS Conference 2018, HKUST

Summary

- First-order issues to realize longitudinal polarized colliding beams at CEPC-Z (45.6 GeV) have been addressed
 - Beam polarization can be well preserved in the booster, without additional hardware
 - Spin rotators implemented in the collider ring, shows promising performance
 - This also provides an alternative scenario for resonant depolarization applications
- The current studies will be extended to higher beam energies, for example CEPC-Higgs (120 GeV), many issues to be solved
 - Polarization maintanance in the booster
 - Spin rotator design in the collider ring
 - Radiative depolarization due to machine imperfections in the collider ring
- There will be 3 talks detailing CEPC polarization studies in the forthcoming EPOL 22 Workshop WP1.

Thank you for your attention!