CEPC Vacuum System

Yongsheng Ma Institute of High Energy Physics. CAS Sep 15th 2022

Outline

Introduction

Vacuum Requirement Vs Calculation of Collider

Progress R&D

➤Vacuum chambers

NEG coating inside of vacuum chambers

➢RF shielding bellows

≻MDI vacuum

Summary

Preview of CEPC vacuum system

CDR Vacuum requirements and configuration Vs TDR

	Material	Cross Section		
Booster	Extruded aluminum 6061	φ56		
Electron Ring	Extruded copper, NEG film	56×75 to <mark>φ56</mark>		
Positron Ring	Extruded copper, NEG film	56×75 to <mark>φ56</mark>		
MDI	Copper/tungsten alloy, NEG film	φ20		

Machine and Vacuum Parameters

	Е		ρ	Vacuum	-
	Gev	A 0.0407	m	Torr	
HIGGS W	120 80	0.0167 0.084	10700 10700	2 × 10 ⁻⁹ 1 5 × 10-9	CDK
Z	45.5	0.803	10700	8 × 10 ⁻¹⁰	– TDR
tt	180	0.0033	10700	1 × 10 ⁻⁸ _	_

Vacuum pressure profile of pipe

Vacuum Requirement Vs Calculation of Collider

✓ PSD (photon-stimulated desorption) as a Function of Critical Energy of SR

Figure 4.38 Normalised pressure increase in LEP as a function of beam energy. Source: Reprinted with permission from Billy et al. [114], Fig. 4. Copyright 2001, Elsevier.

[4] MALYSHEV O B. Vacuum in Particle Accelerators [J]. 2020,

Vacuum Requirement Vs Calculation of Collider

- PSD (photon-stimulated desorption) & TD (thermal desorption)
- Pav-Ar, CH4-partial pressure, calculated as 1% gas load

CEPC 30MW								
	PSD	q _{td}	q _{lsr}	q	P _s	SIP Distance	Pav	Vacuum requirement
	molecules/photon	Torr·L/s·cm ²	Torr·L/s·cm ²	Torr·L/s·cm ²	L/s	m	Torr	Torr
Higgs	2.00E-05	1E-12	8.21E-12	9.21E-12	10	22	1.1E-9	2 × 10 ⁻⁹
W	1.00E-05	1E-12	2.75E-11	1.48E-11	10	22	1.5E-9	1.5 × 10 ⁻⁹
Z	4.00E-06	1E-12	1.50E-10	3.09E-11	10	<mark>11</mark>	1.0E-09	8 × 10 ⁻¹⁰
tt	1.35E-03	1E-12	2.43E-12	1.65E-10	10	<mark>11</mark>	4.1E-09	1 × 10 ⁻⁸
CEPC 50MW								
Higgs	2.00E-05	1E-12	1.43E-11	1.53E-11	10	22	1.7E-9	2 × 10 ⁻⁹
W	1.00E-05	1E-12	4.82E-11	2.51E-11	10	22	2.1E-09	1.5 × 10 ⁻⁹
Z	4.00E-06	1E-12	2.59E-10	5.28E-11	10	<mark>11</mark>	1.8E-09	8 × 10 ⁻¹⁰
tt	1.35E-03	1E-12	3.98E-12	2.70E-10	10	11	6.5E-09	1 × 10 ⁻⁸

•In Z & tt mode, the number of sputtering ion pumps (SIP) needs to be doubled

•Due to the high flow intensity of Z mode, the vacuum is lower than the design value, which needs to be further evaluated

Progress R&D: Vacuum chamber

Due to the length of the magnet, the maximum length of the vacuum chamber is obout 11.3 meters, and the shortest length is about 3.8 meters.

To eliminate the quadrupolar wakes, elliptical(75×56) vacuum chamber in the collider ring will be replaced by circular chambers with dimeter of 56 mm

Challenge and Response : Electron Cloud & impedance

Liu Yu Dong

D Electron Cloud of positron ring

Elliptical chamber: SEY<1.3 Round chamber: SEY<1.2 NEG coating : effective method on control

D *Resistive wall impedance*

Round pipe of Copper (2mm) with NEG coating (200nm)

Strictly control on the coating thickness for impedance source to restrain the instability!

-30 -20

Strength calculation of 10 m vacuum chamber

• Good support is an important guarantee to ensure that the 10-meter vacuum chamber does not deform

Every 3m is supported, with a maximum deformation of 1.66mm;

Every 2m is supported, with a maximum deformation of 0.1mm

◆ The RF bellows need enough compression length

The block and water cooling design

Block is used to protect the bellows and BPM from the synchrotron radiation etc.

- downstream 0.44m area, theoretically.
- > The installation accuracy needs to be very high.

Technique process Cu vacuum chamber

- Cu beam pipe and water cooling channel are extruded respectively, and brazed together.
- Stainless steel material is used for flanges, and there is a rotatable flange at an end of vacuum chamber.
- The flanges and beam pipe are welded by high temperature brazing solder, and low temperature brazing solder are used between the beam pipe and water cooling channel.

Cu and AI vacuum chamber prototypes

- A 6 m long simple vacuum furnace is fabricated, which is used to weld the water cooling channels of Cu chambers through low temperature brazing solder.
- The welding seams are checked by wire-electrode cutting. The welding joints are smooth and have good contacting.
- The prototypes of copper & aluminum vacuum chambers with a length of 6 m have been fabricated and tested, which meet the engineering requirements.

Round chamber is easier to be fabricated.

Preparation of Cu substrate for NEG coating

Vacuum pipes fabricated for NEG coating

Vacuum pipes will be degreasing

etching

passivation

The content of oxygen decreases as depth of Cu surface

NEG coating of vacuum chamber

- NEG coating suppresses electron multipacting (SEY < 1.2) and beam-induced pressure rises, as well as
 provides extra linear pumping.
- The NEG coating is a titanium, zirconium, vanadium alloy, deposited on the inner surface of the chamber through sputtering.
- The coating thickness should lower than 200nm to control impedance source to restrain the beam instability!

[1] LIU S, LIU Y, WANG P, et al. Experimental study on secondary electron emission characteristics of Cu [J]. Rev Sci Instrum, 2018, 89(2): 023303.

◆ SEY of NEG coating

SEY will decrease to 1.1 after synchrotron radiation

NEG coating facility synergy of HEPS

□ NEG coating of vacuum pipe

A setup of NEG coating which has ability to coat 4 meters long pipe has been built for vacuum pipes of HEPS at location of PAPS. And several test vacuum pipes of 4 meters long, φ 22 mm of inner diameter have been coated, which shows that NEG film has good adhesion and thickness distribution. Theoretically, It is easier to be coated of CEPC vacuum pipe, because of the ratio of diameter to length is 56/6000 which is bigger then 22/4000.

NEG coating facility synergy of HEPS

 Develop strict and standardized vacuum chamber assembly process to reduce pollutants and particles entering into NEG film during installation

A setup of NEG coating which has ability to coat 6 meters long pipe by moves solenoid is being built for vacuum pipes at location of Dongguan of Guangdong province.

6 meters

Progress R&D: NEG coating

Capacity and Pumping Speed of NEG

Capacity is an important parameter to characterize the life times of NEG film
Pumping speed will determine the pressure of vacuum

Pumping Speed as Activation/air Cycles

D Absorbing speed of NEG coating at different activation temperature vs time

The pumping speed of NEG decreases with the increase of times of use, but the pumping speed of NEG can be increased by prolonging the activation time and increasing the activation temperature

- No63 (2) After 11 months N2 storage
- No63 (3) After 7 months Ne storage
- No63 (2) -18, Measure pumping speed immediately after cooling , the pressure is about 5E-9 Torr. While the others measurement
- No63 (2) -18, The background of vacuum pressure is high during this NEG coating activation, due to only turbo molecular pump(TMP) worked at this occasion, while others activation both TMP and ion pump worked together. Which shows that the bad background vacuum of activation has an negative effect on the NEG pumping speed.

CEI

R&D of RF shielding bellows

- ◆ Vacuum bellow modules are needed to compensate the mechanical misalignments of the vacuum chambers during installation and to absorb their thermal expansion during the bake-out. In order to reduce the beam impedance during operation with beams these modules are equipped with RF bridges to carry the image current.[1]
- The key components experiments such as spring fingers and contact fingers have been carried out. Contact force is uniformly from different fingers and meets the target of 125±25g. The prototypes of RF shielding bellows have been fabricated in local company.

MDI vacuum

Conception design

- > OFE copper or Tungsten alloy will be used to made the fork vacuum chamber of MDI
- > NEG coating is suggested to the fork vacuum chambers
- > Water cooling pipe is designed due to the high thermal load of impedance at high light Z model.

Summary

- Elliptical vacuum chambers in the collider ring are replaced by circular chambers with dimeter of 56 mm.
- The prototypes of copper & aluminum vacuum chambers with a length of 6 m have been fabricated and tested, which meet the engineering requirements.
- Similar to positron ring, NEG coating is proposed to vacuum chamber of electron storage ring to absorb extra gas load.
- The prototypes of RF shielding bellows have been fabricated. Contact force is uniformly from different fingers and meets the target of 125±25g.
- Tungsten alloy will be used to made the fork vacuum chamber of MDI

Thank you !