Vacuum Systems of EIC eeFACT2022 Workshop

Charles Hetzel on behalf of the team

September 15, 2022

Electron-Ion Collider

ENERGY Office of Science

Outline

- Timeline
- ESR Vacuum System
 - Integrate photon absorber
 - Chamber flanges
 - RF bellows
 - Chamber design concepts
- HSR Vacuum System
 - Actively cooled beam screen
 - RF bellows/BPM module
 - EIC interconnect

EIC High Level Schedule

Electron-Ion Collider

3

Electron Storage Ring

ESR Arc Layout

 $15\sigma_x/25\sigma_v + 10/5$ mm for orbit distortion

(DRIFT) 5.900 [149.9 mm] -----

Reverse bends required for 5GeV operations

Integrated Photon Absorber

- Mechanical deformation to profile
- Shallow tapers
 - 100:1 on forward side, 10:1 on rear side
- Single layer between heat and cooling water
- Some distortion to vertical profile expected
- Tooling development required

Alternative Exit Absorber Concept

- Better control over aperture
 - Wire EDM profile
- Still one weld to extrusion
- Cooling line e-beam welded

Chamber Flange

- Flanges welded to extrusions
 - Retain hardness of seal surface ($R_B = 65$ min)
 - $\frac{1}{4}$ hard copper gaskets (R_B = 25 max)
- Oversized bolt holes
- Common flange geometry
- Final gasket dimension to be developed
 - 'Bulging' of material into beam channel

Electron-Ion Collider

8

J. Bellon

Incursion Into Beam Channel

A. Blednykh

Incursion Into Beam Channel

Gasket Test

Electron-Ion Collider

11

ESR RF Shielded Bellows Requirements

- Combination RF-Vacuum seal
- 30W beam induced heating
- Compact footprint
- Stroke Req: -25/+10mm
 - Cell length variation: +/-5mm
 - Compression: -15mm
 - Extension: +3mm
 - Chamber length: +/-2mm
 - Alignment: +/-1mm
- Radial offset: +/-2mm
- Angular offset: +/-0.5° [8.7mrad]

Bellows Prototype Parts

Complete flanges with water cooling

Bellows Prototype Parts

Bellows Prototype Parts - Coatings

- Silver plated sleeves also in hand
- Silver plating plus heavy metal ion implanting
 - Copper and Tungsten
- Life cycle testing planned in coming weeks

15

ESR Chamber Profile

NEG Pump Concept – Resistive Wire Heater

Dipole Chamber Concept

Summary and Next Steps - ESR

- Finalize primary pumping strategy
 - Still evaluating linear ZAO modules
- Develop details for prototype chamber
 - Exit absorber and flanges
 - Short 'proof of principle' unit to validate design features
 - Full length prototype chamber(s)
- Complete ESR bellows prototype
 - Life cycle testing to finalize coatings
 - Proof out RF-vacuum seal geometry

Hadron Storage Ring - HSR

- Beam screen
 - Resistive wall heating
 - Reduction of SEY
- Replace RF bellows
- Replace stripline pickups

HSR Beam Screen

22

HSR Beam Screen

Cooling Pipe Exit Block

Bend cooling tube (both ends) Welded to end of cold bore before screen is installed

Cooling Pipe Exit Block

Weld exit bushing Tapered centering to exit block ring 11 -Weld exit bushing to cooling tube bushing Leak check UHV space

Cooling Pipe Exit Block - Movable

Bellow separates cold bore and beam screen thermal contraction

HSR Bellows/BPM Module

- Fit existing interconnect space
- RF Interface with beam screen
- 30W beam induced heating
- Stroke Req: 50mm
 - Compression (Install): -16mm
 - Extension (cool down): +26mm
 - Interconnect length: +/-4mm
- Radial offset: +/-6mm
- Angular offset: +/-1° [17mrad]

Same cross section as beam screen

HSR BPM Concept

Glass seal

Capacitive gap between housing and button

HSR Bellows/BPM Module

Beam screen cross section

Existing RHIC Interconnect

Note: Beam pipes are plugged prior to rework to prevent chips and contamination for entering the UHV space

Note: Fixturing used to ensure adapter plates are square and properly positioned

Note: UHV space is cleaned and plugs are removed prior to screen install. Area is treated as 'clean' going forward

Note: BPM modules are characterized and pre-surveyed prior to installation

Summary and Next Steps - HSR

- Preliminary design concepts for beam screen and BPM/bellows module are completed
 - Lots of analysis has been done but not shown (FEA, impedance, BPM signals, etc)
 - Details and tolerance requirements need to be established
- Work underway to determine the cold bore beam pipe size
 - Laser tracker measurement of existing magnets
 - 'Mole' under development
- R&D is planned to develop welding joint, tooling, procedures, etc
- aC coating development proceeding in parallel
 - Horizontal coating proof of principle
- Plan to build prototype BPM/bellows module
 - Similar features to ESR and RCS bellows

Thank you for your attention

And thank you to the team

J. Bellon A. Blednykh P. Braunius D. Gassner B. Gallagher D. Holmes F. Micolon M. Sangroula P. Thieberger J. Tuozzolo S. Verdu Andres D. Weiss C-AD Vacuum Group C-AD Survey Group Central Shops And many more

Backup Slides

Electron Injector Chain

1	Polarized source
2	Low energy beam transport (0.4MeV)
3	400 MeV LINAC
4	Med energy beam transport (400 MeV)
5	Injection to RCS
6	Injection to ESR (up to 18 GeV)

- Window between laser and beam vacuum
- Particulate free cleaning and assembly
- XHV required for source
- Cathode exchange system
- 'Turn-key' LINAC will use EIC specified vacuum equipment and controllers
- Various diagnostics to be incorporated

Rapid Cycling Synchrotron Ring

RCS Vacuum Chambers

- Multipole (MP) and dipole (DP)
 - 34.9mm x 1mm wall copper (C12200)
 - Commercial 1.375 DWS tubing
 - BPMs mounted on MP chambers
- One RF bellows per half cell
- Common cross in straights

Arc component	Length [m]	Qty
MP chamber	2.0	384
DP chamber	4.2	384
RF bellows	0.082	384

	Straight component	Length [m]	Qty
	Chamber	3.8	300
i	Pump tee	0.80	300
Ŋ	RF bellows	0.082	300

RCS Half Cell Layout

45

CF Flange Test

DETAIL B SCALE 2 : 1

5

RCS RF Shielded Bellows

• Common design strategy (RCS, ESR, HSR)

Electron-Ion Collide

47

- Compact footprint
- Combination RF-Vacuum seal
- Stroke Req: +/-5mm
- Radial offset: +/-2mm
- Angular offset: +/-0.5° [8.7mrad]

Impedance Simulations - RCS

NEG Pump Concept

Resistive heater approach based on SuperKEKB

Summary and Next Steps - RCS

- Work on preliminary design models will resume soon
 - Prototype chamber(s) and bellows
- Conceptual design for BPMs and mounting to chamber
- Evaluate thermal issues
 - Eddy currents
 - Resistive wall heating
 - Electrical isolation between chamber and magnets
- Chamber support concept
- Interfaces between groups (RF, transfer lines, diagnostics, etc.)
- Cost and schedule updates