65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022)

Studies and possible mitigation of electron cloud effects in FCC-ee

Fatih Yaman, Izmir Institute of Technology

Frank Zimmermann, CERN

Many Thanks: the FCC-ee optics team

Sept. 14, 2022

Outline

- FCC-ee parameters : machine, beam
- **Overview** : SEY Models, PyECLOUD
- Electron densities at pipe center : reference, min. and max.
- Average of min.'s vs estimated threshold : Drift, Dipole regions
- Mitigation Ideas
- Conclusions

FCC-ee Collider Arc Dipole Parameters

Parameters	2 IPs	4 IPs
beam energy [GeV]	45.6	45.6
bunches per train	150	150
trains per beam	1	1
circular beam pipe radius [mm]	35	35
r.m.s. bunch length (σz) [mm]	3.5	4.32
h. r.m.s. beam size (σx) [μm]	120	207
v. r.m.s. beam size (σ _y) [μm]	7	12.1
number of particles / bunch (10 ¹¹)	1.7	2.76
bend field [T]	0.01415	0.01415
circumference C [m]	97.76	91.2
synchrotron tune Qs	0.025	0.037
average beta function $\boldsymbol{\beta}_{y}$ [m]	50	50
threshold density (10¹² [m - ³])	0.027	0.043

threshold density (single-bunch instability)
$\rho_{\rm thr} = \frac{2\gamma Q_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_e \beta_y C}$
$\omega_e = \left(\frac{N_b r_e c^2}{\sqrt{2\pi}\sigma_z \sigma_y (\sigma_x + \sigma_y)}\right)^{1/2}$
$K = \omega_e \sigma_z / c$
$Q = \min(\omega_e \sigma_z/c, 7)$

K. Ohmi, Beam-beam and electron cloud effects in CEPC / FCC-ee, Int. Journal of Modern Physics A, 31(33), 1644014 (2016).

- K. Ohmi, F. Zimmermann and E. Perevedentsev, Wakefield and fast head-tail instability caused by an electron cloud, Phys. Rev. E 65, 016502 (2001).
- F.Yaman, G.Iadarola, R. Kersevan, S. Ogur, K. Ohmi, F. Zimmermann and M. Zobov, Mitigation of Electron Cloud Effects in the FCC-ee Collider, arXiv:2203.04872, (2022).

PE generation rate {1e-3, 1e-4, 1e-5, 1e-6} m⁻¹

fine structure constant

$$\alpha \approx 1/137$$

the Lorentz factor

 $\gamma \approx 10^5$

radius of curvature of the particle path

```
\rho \approx 11000 \, [m]
```

Furman-Pivi & ECLOUD SEY Models

Simulation Tool: PyECLOUD

PyECLOUD

- 2D Electrostatic PIC simulation
- effects of space charge and secondary electrons are included
- adaptive scheme to control the number of electrons per macro particle during the simulation
- ECLOUD and Furman-Pivi SEY models

G. Iadarola, "Electron cloud studies for CERN particle accelerators and simulation code development" PhD Thesis, U. Naples, CERN-THESIS-2014-047, (2014).

N.Hilleretetal.,"Secondary electron emission data for the simulation of electron cloud", Proc. of ECLOUD'02, Geneva, Switzerland, CERN-2002-001, (2002).

with the courtesy of G. ladarola

4 IPs ($n'_{(\gamma)} \rightarrow$ 1e-6 m⁻¹, bunch spacing: 32ns) Dipole Region

- results via two SEY models agree well for SEY $\simeq 0$ (min. $\simeq 2e7 e^{-}/m^{3}$)
- max. \simeq 5e8 e⁻/m³ is verified with both models for SEY = 1.1

e⁻ densities for Arc Dipole at the pipe center

- exponential-like growth for 2 IPs parameters via Furman-Pivi model
- results via two SEY models agree for 4 IPs parameters

4 IPs max. densities for Drift and Dipole regions

SEY =1.4 , $n'_{(\gamma)}$ =1e-3 m⁻¹ , bunch spacing: 30 ns

- computations via Furman-Pivi SEY model is more sensitive to external magnetic field
- ECLOUD SEY model may yield lower densities up to \simeq 4 times

4 IPs min. densities for Drift and Dipole regions

SEY =1.1 , $n'_{(\gamma)}$ =1e-6 m⁻¹ , bunch spacing: 32 ns

- both models yield similar results w.r.t. regions due to low SEY & PE (similar behaviours for 30ns bunch spacing)
- 0.01415 [T] external magnetic field ≈ 2.5 times lowers the densities for the weakest SEY & PE

Average of min.'s for center electron density

Threshold density and average min.'s for Drift

- $n'_{(\gamma)}$ < 1e-3 m⁻¹ is necessary to keep average minimums lower than the threshold for both SEY models and bunch spacings
- $(n'_{(\gamma)} = 1e-4 \text{ m}^{-1}, \text{SEY} = 1.4, \text{Furman-Pivi Model})$ indicates set of parameters for a value larger than threshold for both bunch spacings

Threshold density and average min.'s for Dipole

- all parametric scans using ECLOUD SEY model refer values lower than the estimated threshold
- $n'_{(\gamma)} < 1e-3 \text{ m}^{-1}$ is necessary to keep average minimums lower than the threshold for Furman-Pivi model (exceptional case: $n'_{(\gamma)} = 1e-3 \text{ m}^{-1}$, SEY=1.1)

F.Yaman, G. Iadarola, R. Kersevan, S. Ogur, K. Ohmi, F. Zimmermann, M. Zobov, 'Mitigatioh of electron cloud effects in the FCC-ee collider, EPJ Tech. Inst., 9:9, 2022

Electron Cloud Mitigation

SEY =1.4 ,
$$n'_{(\gamma)}$$
 =1e-3 m⁻¹ ,
bunch spacing: 30 ns, Furman-Pivi Model, Drift Region

13

Electron Cloud Mitigation

SEY =1.4 , $n'_{(\gamma)}$ =1e-3 m⁻¹ , bunch spacing: 30 ns, Furman-Pivi Model, Drift Region

Mitigation tests via single trailing bunch

SEY =1.4 ,
$$n'_{(\gamma)}$$
 =1e-3 m⁻¹ ,

bunch spacing: 30 ns, Furman-Pivi Model, Drift Region

Clearing the residual electrons via low-charge trailing bunch

private communication with S. Veitzer (Tech-X), July 2021

Mitigation tests via single trailing bunch

SEY =1.4 , $n'_{(\gamma)}$ =1e-3 m⁻¹ , bunch spacing: 30 ns, Furman-Pivi Model, Drift Region

Conclusions and Future Plans

- 4IPs parameters & (30ns, 32ns) bunch spacing relax Ecloud build up
- \simeq [6e8 1.75e13] m⁻³ center electron density values for 4IPs parameter scope
- Simulations are performed in the realistic photon flux regimes
- $n'_{(\gamma)}$ < 1e-3 m⁻¹ is necessary to keep average minimums lower than the estimated threshold for both SEY models, bunch spacings, dipole & drift regions
- In Drift Region a particular case for both bunch spacings : $(n'_{(\gamma)} = 1e-4 \text{ m}^{-1}, \text{ SEY} = 1.4, \text{ FP})$ indicates set of parameters for a value larger than threshold
- Clearing the residual electrons
- Verification of Wakefield calculations, Impedance calculations
- Simulations with the measured SEY data

THANK YOU FOR ATTENTION!

