EIC MDI & IR Magnet Design

Holger Witte Head Magnet Systems, L3 IR eeFACT 2022 September 13th 2022 Electron-lon Collider

Jefferson Lab

ENERGY Office of Science

EIC IR: Overview

2

Electron-Ion Collider

IR location: IR6

EIC IR: Forward Direction

Name	R1	length	В	grad	B pole
	[m]	[m]	[T]	[T/m]	[T]
BOApF	0.043	0.6	-3.3	0	-3.3
Q1ApF	0.056	1.46	0	-72.608	-4.066
Q1BpF	0.078	1.61	0	-66.18	-5.162
Q2pF	0.131	3.8	0	40.737	5.357
B1pF	0.135	3	-3.4	0	-3.4

- Interleaved magnet scheme
 - Adding magnets is challenging
- Why are these magnets difficult?
 - Required field
 - Aperture
 - Geometric constraints
- Hadron forward magnets: collared magnets
 - Large apertures: physics
- Electron forward magnets/B0pF: direct wind magnet
- All magnets NbTi, 2K (Q0eF: 4K)

Name	R1	length	В	grad	B pole
	[m]	[m]	[T]	[T/m]	[T]
Q0eF	0.025	1.2	0	13.5	0.4
Q1eF	0.063	1.61	0	8.1	0.5

3

EIC IR: Forward Direction

Name	R1	length	В	grad	B pole
	[m]	[m]	[T]	[T/m]	[T]
BOApF	0.043	0.6	-3.3	0	-3.3
Q1ApF	0.056	1.46	0	-72.608	-4.066
Q1BpF	0.078	1.61	0	-66.18	-5.162
Q2pF	0.131	3.8	0	40.737	5.357
B1pF	0.135	3	-3.4	0	-3.4

- Interleaved magnet scheme
 - Adding magnets is challenging
- Why are these magnets difficult?
 - Required field
 - Aperture
 - Geometric constraints
- Hadron forward magnets: collared magnets
 - Large apertures: physics
- Electron forward magnets/B0pF: direct wind magnet
- All magnets NbTi, 2K (Q0eF: 4K)
- Two cryostats

Name	R1	length	В	grad	B pole
	[m]	[m]	[T]	[T/m]	[T]
Q0eF	0.025	1.2	0	13.5	0.4
Q1eF	0.063	1.61	0	8.1	0.5

Electron-Ion Collider

3

Hadron Forward - Apertures

- To optimize aperture: magnets tilted and displaced
- Verified with two codes
 - BMAD general purpose tracking code
 - Geant4 (friends from Physics)

Generate cone for particles with p_t=1.3GeV Rendered in CAD program with magnet apertures

EIC IR: Rear Direction

Name	R1	R2	length	В	grad	B pole
	[mm]	[mm]	[m]	[T]	[T/m]	[T]
Q1eR	66	79	1.8	0	14	-1.1
Q2eR	83	94	1.4	0	14.1	1.3
(B2eR)	97	139	5.5	0.2	0	0.2
B2AeR	90.45	90.45	2.0	0.192	0	0.192
B2BeR	111.45	111.45	3.45	0.238	0	0.238

- 2-in-1 magnets
 - Common yokes
- Main issue: space between magnets
 - Crossing angle
- Large aperture due to synrad fan
 - Comes from low-beta quads
- All magnets NbTi, 4.2K
- All magnets direct wind

Name	R1	R2	length	grad	B pole
	[mm]	[mm]	[m]	[T/m]	[T]
Q1ApR	20	26	1.8	78.4	2.0
Q1BpR	28	28	1.4	78.4	2.2
Q2pR	54	54	4.5	33.8	1.8

B2eR: split into two magnets, not shown in figure

5

EIC IR: Rear Direction

Name	R1	R2	length	В	grad	B pole
	[mm]	[mm]	[m]	[T]	[T/m]	[T]
Q1eR	66	79	1.8	0	14	-1.1
Q2eR	83	94	1.4	0	14.1	1.3
(B2eR)	97	139	5.5	0.2	0	0.2
B2AeR	90.45	90.45	2.0	0.192	0	0.192
B2BeR	111.45	111.45	3.45	0.238	0	0.238

- 2-in-1 magnets
 - Common yokes
- Main issue: space between magnets
 - Crossing angle
- Large aperture due to synrad fan
 - Comes from low-beta quads
- All magnets NbTi, 4.2K
- All magnets direct wind
- Three cryostats

Name	R1	R2	length	grad	B pole
	[mm]	[mm]	[m]	[T/m]	[T]
Q1ApR	20	26	1.8	78.4	2.0
Q1BpR	28	28	1.4	78.4	2.2
Q2pR	54	54	4.5	33.8	1.8

B2eR: split into two magnets, not shown in figure

5

IR Magnets – Fabrication Techniques

- Three groups of superconducting magnets
 - All NbTi

10 Direct Wind Magnets (S-MD) Patterns: serpentine and CCT

5 Collared Magnets

1 Special Magnet (also direct wind)

B0pF Forward Spectrometer

- Beams share magnet aperture
 - Hadrons: 1.3T field
 - Electrons: 14T/m gradient
- Implementation: combined function magnet
 - Large aperture quadrupole; zero field axis shifted with dipole
- Space constraints/large aperture
 - Requires 2K
- Courtesy of B. Parker (BNL)

Hadron Forward Cable Magnets Status

- Re-design for 2K
 - 4K did not converge
 - Better margins
 - Risk reduction
- New cable geometry: LHC style, 15mm wide
 - Two keystones
 - Similar to LHC cable
 - 28 strands
- 2D work complete
 - 3D work ongoing
 - Structural analysis

2D Cross-Sections

- 2D cross-sections for all collared magnets
- Sufficient field quality and temperature margin at 2K
- Iron yoke magnetization management

Courtesy of BNL SMD

3D Designs

- Preliminary designs for all magnets
 - Minimized peak field in ends
 - Good harmonics
- Sufficient margin (>30%)

GRAPH NO: 3. 4. 5. 6. 7. 8.

Courtesy of BNI SMC Electron-Ion Collider

Direct Wind Magnets - Status

- Preliminary magnet designs complete
- Recent changes
 - B2eR split into two magnets to optimize magnet aperture/cost
 - B0pF length reduction
- Implementation of correctors

Detector Solenoid Compensation

- Need four skew quadrupole magnets
 - 0.6T/m over 1.8m (assuming 3T solenoid)
- Possible locations
 - Hadrons: B0ApF, Q1ApR
 - Electrons: Q1eF, Q1eR
 - Q0eF: technically possible, but cuts into acceptance

BOApF – Corrector Dipole

- Horizontal corrector, 3.3T, 0.6m long
 - Reason: B0pF is fixed field magnet
 - Different energies: different orbits
 - B0ApF and B1(A)pF: same orbit
- Also: vertical corrector
 - Detector solenoid compensation
- Also: possible location for skew quadrupole

4 layers skew dipole 2 layers skew quadrupole Wire dia: 0.25mm

BOApF: 1.55mm dia

Skew Quad, Hadron Forward

- Implementation: CCT
 - Serpentine pattern could be more efficient
- Sufficient margin for all multipoles at 2K
- Lower detector solenoid field: margins will increase

Q1ApR/Q1eR Tapered Quads

Q1ApR/Q1eR Tapered Quads

Progress – Integration to IR

Synchrotron Radiation

- Extensive simulations of SR by dedicated working group
 - Including photo desorption
 - SR photon spectrum provided to collaborations
- Two separate codes with good agreement
 - Synrad3D
 - SYNC_BKG (Mike Sullivan)
- Focus on
 - Central chamber
 - Lumi window
 - Polarimeter
 - Heat loads inner IR
 - Spin rotators/crab cavities

Courtesy of C. Hetzel (BNL) / M. Sullivan

Collimators

• ESR

- Planned in IR2 & 4
- 2-sided prim. + 2 sec. for cleaning and flexibility with phase advances and optics

Summary

- IR design is mature
- Collared magnets: preliminary design complete
 - 2D/3D
 - 2K operation
- Most magnets: direct wind manufacturing technique
 - Preliminary designs complete
 - Including corrector magnets into designs
- Synchrotron radiation
- Detector integration
- Collimator design progressing

Acknowledgements

BNL

J. Adam, M. D. Anerella, E.C. Aschenauer, J. Avronsart, A. Ben-Yahia, J.S. Berg, M. Blaskiewicz, A. Blednykh, W. Christie, J. Cozzolino, A. Drees, D. Gassner, K. Hamdi, C. Hetzel, H.M. Hocker, D. Holmes, A. Jentsch, A. Kiselev, P. Kovach, M. Kumar, F. Kurian, H. Lovelace III, Y. Luo, G. Mahler, A. Marone, G. McIntyre, C. Montag, R.B. Palmer, B. Parker, S. Peggs, S. Plate, V. Ptitsyn, G. Robert-Demolaize, J. Rochford, C. Runyan, J. Schmalzle, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, J. Tuozzolo, F.J. Willeke, H. Witte, Q. Wu, Z. Zhang

JLAB

M. Stutzman, R. Gamage, P. Ghoshal, T. Michalski, W. Wittmer

SLAC

M. Sullivan, Y. Nosochkov, A. Novokhatski

Additional Slides

Forward Hadron Magnets

	Length	IR1	Pole tip field R1	Dipole Field	Gradient
	m	cm	т	т	T/m
B0pF	1.2	17		-1.3	
BOApF	0.6	4.3		3.3	
Q1ApF	1.46	5.6	4.07	0	-77.903
Q1BpF	1.61	7.8	5.16	0	-63.028
Q2pF	3.6	11.3	5.36	0	39.736
B1pF	3	13.5		3.4	
B1ApF	1.5	16.8		2.7	

IR1: inner radius (= clear aperture) at coil beginning
Pole tip field R1: IR1*gradient

Collared coils, apart from BOpF and BOApF (direct wind)

Forward Electron Magnets

	Length	IR1	IR2	Pole tip field R1	Pole tip field R2	Gradient
	m	cm	cm	т	т	T/m
Q0eF	1.2	2.5	2.5	0.4	0.4	13.5
Q1eF	1.61	6.3	6.3	0.5	0.5	8.1

IR1: inner radius (= clear aperture) at coil beginningIR2: inner radius (= clear aperture) at coil endPole tip field R1: IR1*gradientPole tip field R2: IR2*gradient

All direct wind coils

Rear Hadron Magnets

	Length	IR1	IR2	Pole tip field R1	Pole tip field R2	Gradient
	m	cm	cm	Т	Т	T/m
Q1ApR	1.8	2.0	2.56	1.56	2.	78
Q1BpR	1.4	2.8	2.8	2.184	2.184	78
Q2pR	4.5	5.4	5.4	1.84	1.84	34

IR1: inner radius (= clear aperture) at coil beginningIR2: inner radius (= clear aperture) at coil endPole tip field R1: IR1*gradientPole tip field R2: IR2*gradient

All direct wind coils Q1ApR: tapered

Rear Electron Magnets

	Length	IR1	IR2	Pole tip field R1	Pole tip field R2	Dipole Field	Gradient
	m	cm	cm	Т	Т	Т	T/m
Q1eR	1.8	4.76	5.57	0.67	0.78	0	14
Q2eR	1.4	6.43	6.43	0.91	0.91	0	14.1
B2AeR	2.0	90.45	90.45	0.192	0.192	0.192	0
B2BeR	3.45	111.45	111.45	0.238	0.238	0.238	0

IR1: inner radius (= clear aperture) at coil beginningIR2: inner radius (= clear aperture) at coil endPole tip field R1: IR1*gradientPole tip field R2: IR2*gradient

All direct wind coils Q1eR: tapered double-helix coil

Abort systems: HSR & ESR (a) Existing dump with vacuum window
 Carbon-Carbon Window Graphite Stainless Steel
 Carbon-Carbon Window
 0.5 m C-C blocks, 2.6 m graphite blocks and 2.0 m SS blocks
 (b) Dump without vacuum window
 Orifice Carbon-carbon
 Vacuum pipe NEG pump Stainless Steel

3.2 m C-C blocks and 2.0 m SS blocks

• HSR:

The plan is to keep the current RHIC system w. necessary upgrades

• ESR:

Plan to use an unused spectrometer tunnel in IR2 which will allow extracting the 300-kJ beam away from other IR2 users. It features 6 x 2-mrad vertical kickers, a 2° Lamberton magnet & a 50m-long transfer line with 6 warm quads.

Forward Side, Two Cryostat Layout

Forward Cryostat Inside Tunnel

> B0 Cryostat Inside Detector Hall

Hadron Forward - Apertures

29

Q1ABpF – New Magnet Concept

Q1ABpF – New Magnet Concept

Q1ABpF – New Magnet Concept

Recombining Q1ApF and Q1BpF

Advantages: No end plates, making use of additional space between magnets Smaller aperture at IP side

Q1ABpF: Implementation

• CCT

- Allows to cancel unwanted harmonics
- Modulation of gradient
- Frontloading of gradient
- Helps crosstalk / field quality
 - Better utilization of space
 - Can tailor maximum gradient
- Challenges
 - Need to prove that this works mechanically
 - No collar

Mechanical Analysis

- Ongoing work
 - 2D/3D
- Modeling details 3D
 - Opera 3D: Forces
 - CATIA: Geometry and fill
 - COMSOL: Structural analysis
 - Complexity: 1TB RAM
- COMSOL 2D
 - Contact elements
 - Pre-stress, cooldown and Lorentz force

Electron Ion Collider – eRHIC ³²

Tapered Double Helix Magnet

- Tapered double helix demonstrator
- 4 layer coil, NbTi, 4.2K
 - Aperture: 60..80mm
 - L=0.4m
- Tested successfully 7/16/2020
 - 40 T/m, no quench up to short sample

Tapered Double Helix Magnet

- Tapered double helix demonstrator
- 4 layer coil, NbTi, 4.2K
 - Aperture: 60..80mm
 - L=0.4m
- Tested successfully 7/16/2020
 - 40 T/m, no quench up to short sample
- Constant gradient despite taper
- H. Witte et al. http://dx.doi.org/10.1109/TASC.2019.2902982

HSR Collimators

- Different constraints:
 - Different loss behavior for protons/ions
 - Cold ring requires good cleaning efficiency in the arcs
 - More flexibility on the optics
- We can benefit from RHIC and LHC experience.
- Planned in IR12 :
 - issues with other users due to radiation
 - switchyard doubles the second secondary
 - Real estate
- Momentum collimators are planned for the sector 12 "D7" dummy.
 - Requires cryo-bypass!

Courtesy of

G. Robert-

Demolaize

S [m]

RHIC/EIC IR12 Blue layout (100-275 GeV)