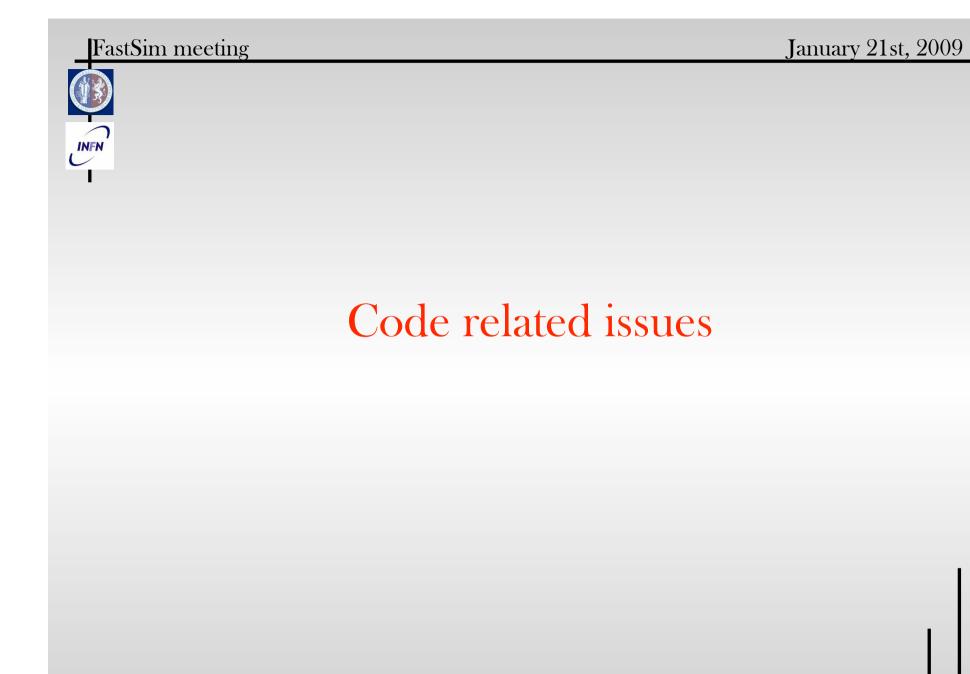


Had Breco code: status report

<u>Elisa Manoni</u> INFN Sez. Perugia

FastSim meeting, January 21 st, 2010



Outline

Code issues:

- K lund bug
- multiple Breco candidates
- $B \rightarrow \tau v$ and $B \rightarrow K^{(*)}$ ll reconstruction
- warning messages
- variables not properly filled
- validation code
- modify code to use bwd ECM as veto device (see Alejandro's talk)
- * Physics studies:
 - BaBar FullSim vs FastSim comparison with new BaBar dataset
 - $B \rightarrow D\pi$, $D \rightarrow K\pi$ studies
 - signal efficiency studies with higher statistics (wrt frascati)
 - B-D vertex separation studies
- * Wiki documentation

Discussed in this talk

INFN

Lund assignment bug

- * $B \rightarrow D^{(*)}K + K_S/\pi^{(0)}$ modes not reconstructed due to a bug in the kaon lund assignment (all tracks form Breco had the pion lund)
- * kaon list used: TableBasedKaonLHTightSelection(_TOF)
- → fixed by fixing bug in PacPid/PacPidTableBasedSelector and PacPid/PacPidTruthBasedSelector

multiple Breco candidates (I)

events with 'semi-identical' breco candidates, i.e. same m_{ES} , ΔE , decayMode but different E^*_{Breco} (!!)

 π^{0} occurs only for modes with π^{0} , i.e. $B \rightarrow D^{*}\pi\pi^{0}$, $B \rightarrow Dk\pi^{0}ks$

the 'semi-identical' candidates are not clones:

Direct daughters differ, as follows:

Direct Daughter 0 cand uid 10050 other uid 10050 cand lundid 211 other lundid 211 Direct Daughter 1 cand uid 10051 other uid 10051 cand lundid 211 other lundid 211 Direct Daughter 2 cand uid 10052 other uid 10052 cand lundid 321 other lundid 321 Direct Daughter 3 cand uid 10053 other uid 10053 cand lundid 211 other lundid 211 Direct Daughter 4 cand uid 10063 other uid 10063 cand lundid 22 other lundid 22 Direct Daughter 5 cand uid 10070 other uid 10068 cand lundid 22 other lundid 22

→ use different gammas to reconstruct the π^0 (so m_{ES} and ΔE should be different between the two cands)

3

multiple Breco candidates (II)

^k such events are accompanied by the warning msg

- UsrWriteBSemiExcl::UsrWriteBRecoBase.hh(63):Cannot put mES = 5.25414 for candidate 0x12d1cff0 in the UsrCandBlock
 - * looking at old BaBar-hn: it should happen if the two candidates are clones and as a consequence the instruction candBlock.put(cand, mES) fails
 - ^{*} in this case cands are not clones, and a ntuple level the ith cand own the UsrVariables (mES, Δ E,...) of the first

* mail sent to BaBar Breco experts

 $B \rightarrow \tau \nu$:

$B \rightarrow \tau \nu$ and $B \rightarrow K^{(*)}$ ll reconstruction

- τ modes implemented in PacHadRecoilUser:
 - 1-prong : evv, μνν, πν
 - 3-prong : $\rho(\pi\pi^0)\nu$, $a_1(\rho^0(\pi\pi)\pi)\nu$

(probably only 1-prong decay will be reconstructed with the high ${\rm SuperB}$ lumi)

^{*k*} no best τ selection applied so far (in one event, if more than one τ mode is reconstructed, i.e. $B \rightarrow \tau(\pi)\nu$, $B \rightarrow \tau(\rho)\nu$, multiple Υ are saved), is it needed?

$B \rightarrow K^{(*)}$]]

* code to be implemented .. feasible for February production?

warning messages

November production: three kinds of warning messages related to

- PacHadRecoilUser code
 - * UsrWriteBSemiExcl::UsrWriteBRecoBase.hh(63):Cannot put mES = 5.27535 for candidate 0x127ed828 in the UsrCandBlock
 - related to the multiple candidate problem
 - * BToDstarTrigger::SmpListMaker.cc(229):Output list "D0ToK3PiLoose" reached maximum allowed length of 1000 candidates. This is the LAST MESSAGE of this kind.
 - in SmpListMaker::reachedMaxNumberOfCandidates, maxnumberofwarnings set to 10, it can be reduced.
 - * BToDstarTrigger::TrkGammaVertex.cc(147):parallel point not parallel!
 - in TrkGammaVertex, e+-e- pairs are paired to find a common vertex

(i.e. gamma conversion)

- in these events the common vertex is not found
- investigation ongoing

R2

r2 variable and hanging jobs

- * at the moment BtaTupleMaker is asked to dump R2 and R2All (eventTagsFloat set "R2All R2")
- * variables always set to 0 (R2) or -9999 (R2All)
- * trying to add them as user variables

hanging jobs

- * in the past it was noticed that running PacProductionApp and enabling only the HadRecoil analysis, jobs were hanging; PacHadRecoilApp was instead running successfully
- * updating the release (V0.1.3) in the last few days, also PacHadRecoilApp jobs hangs (run HadRecoil analyses only using PacProductionApp and enabling some other analysis, (i.e. DstD0ToKspipi)
- * Dave is investigating

11

@ Frascati: Fast Sim DG_BaBar vs BaBar Full Sim (I)

SuperB FastSim:

- B+B-, B0B0bar, ccbar MC samples
- BaBar beams and detector geometry
- * BaBar FullSim, Run3 (BTauNuSemiExclUser "equivalent" to PacHadRecoilUser):
 - B+B-: 49766000 gen. events
 - B0B0bar : 50556000 gen. events
 - ccbar : 83974000 gen. events
- * Differences in reconstructed Breco modes
 - BaBar FullSim: additive modes wrt FastSim, i.e. $B \rightarrow J/\psi X$, new D modes as seeds
 - \rightarrow cut on B and D mode to reject most of them
 - BaBar FullSim: neat+clean+dirty sample \rightarrow cut on purity
- * Selection applied:
 - at least one reconstructed Breco; if #Breco > 1, best candidate $\Leftrightarrow |\Delta E| \min$
 - -0.09<ΔE<0.05 GeV
 - 5.270<m_{ES}<5.288 GeV/c²

@ Frascati: Fast Sim DG_BaBar vs BaBar Full Sim (II)

charged	B0B0bar		BpBm		ccbar	
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
≥ 1 Breco	0.0037	0.0054	0.0100	0.0115	0.0088	0.0079
deltaE cut	0.0028	0.0043	0.0081	0.0093	0.0063	0.0057
mES cut	0.0004	0.0007	0.0034	0.0032	0.0008	0.0007
$\epsilon_{\mathrm{Fast}}^{}/\epsilon_{\mathrm{Full}}^{}$	1.66		0.95		0.94	
neutral	BOB	0bar	Bp	Bm	ccl	oar
neutral Breco	B0B FullSim	0bar FastSim	Bp FullSim	Bm FastSim	ccl FullSim	oar FastSim
			*			
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
Breco ≥ 1 Breco	FullSim 0.0083	FastSim 0.0133	FullSim 0.0031	FastSim 0.0057	FullSim 0.0038	FastSim 0.0054

<u>update</u> : Fast Sim DG_BaBar vs BaBar Full Sim (I)

SuperB FastSim:

- B+B-, B0B0bar, ccbar MC samples
- BaBar beams and detector geometry
- * BaBar FullSim, Run3 sample produced by McGill group for BaBar Leptonic Analysis, thanks to Steve and Dana (BRecoilUser and BRecoilTools):
 - B+B-: 56.035.000 gen. events
 - B0B0bar : 57.888.000 gen. events
 - ccbar: 88.321.000 gen. events
- * Differences in reconstructed Breco modes
 - "Frascati" BaBar sample produced with BSemiExclAddSkim, McGill BaBar sample uses BSemiExcl skim as implemented in FastSim
 - (both "Frascati" and McGill) BaBar FullSim: neat+clean+dirty sample \rightarrow cut on purity
- * Selection applied:
 - at least one reconstructed Breco; if #Breco > 1, best candidate ↔ max purity + mode by

mode ΔE cut

(was: "best candidate $\Leftrightarrow |\Delta E| \min$ ")

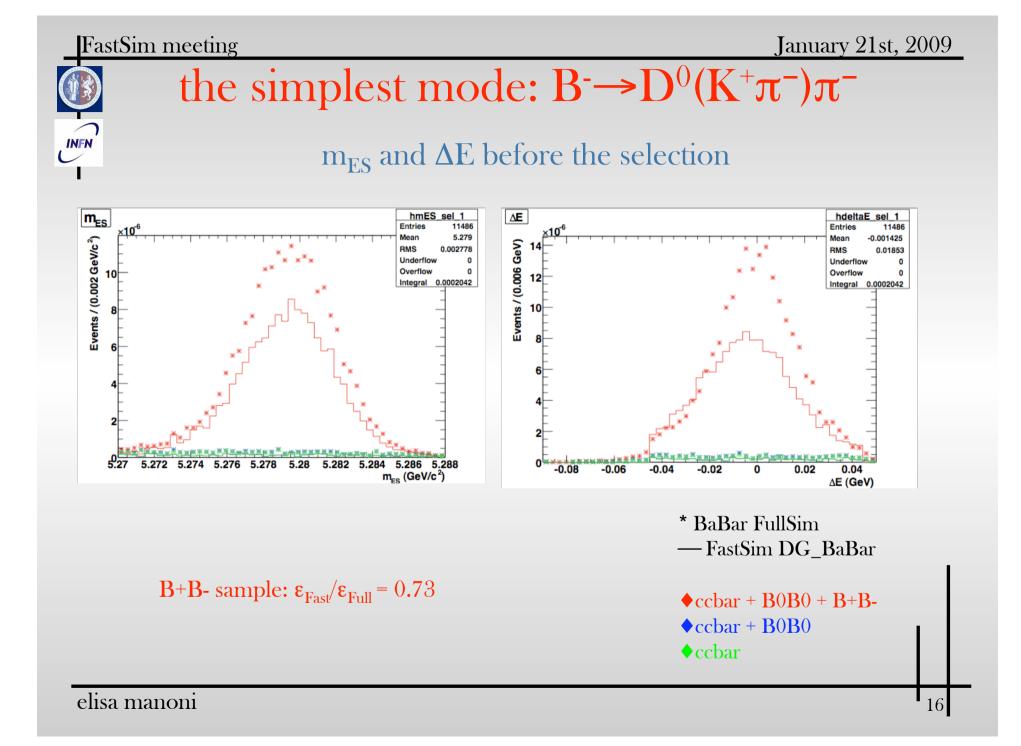
- 5.270<m_{ES}<5.288 GeV/c²

-0.09<AE<0.05 GeV

elisa manoni

13




update: Fast Sim DG_BaBar vs BaBar Full Sim (II)

charged	B0B0bar		BpBm		ccbar	
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
≥ 1 Breco	0.0033	0.0030	0.0091	0.0072	0.0047	0.0043
deltaE cut	0.0031	0.0029	0.0086	0.0071	0.0043	0.0042
mES cut	0.0006	0.0004	0.0038	0.0026	0.0006	0.0005
$\epsilon_{Fast}^{}/\epsilon_{Full}^{}$	0.77		0.70		0.84	
	•					
neutral	BOB	0bar	Bp	Bm	ccl	oar
neutral Breco	B0B FullSim	0bar FastSim	Bp FullSim	Bm FastSim	ccl FullSim	oar FastSim
			*			
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
Breco ≥ 1 Breco	FullSim0.0109	FastSim 0.0099	FullSim 0.0042	FastSim 0.0041	FullSim 0.0035	FastSim 0.0035

elisa manoni

14

possible sources of disagreement

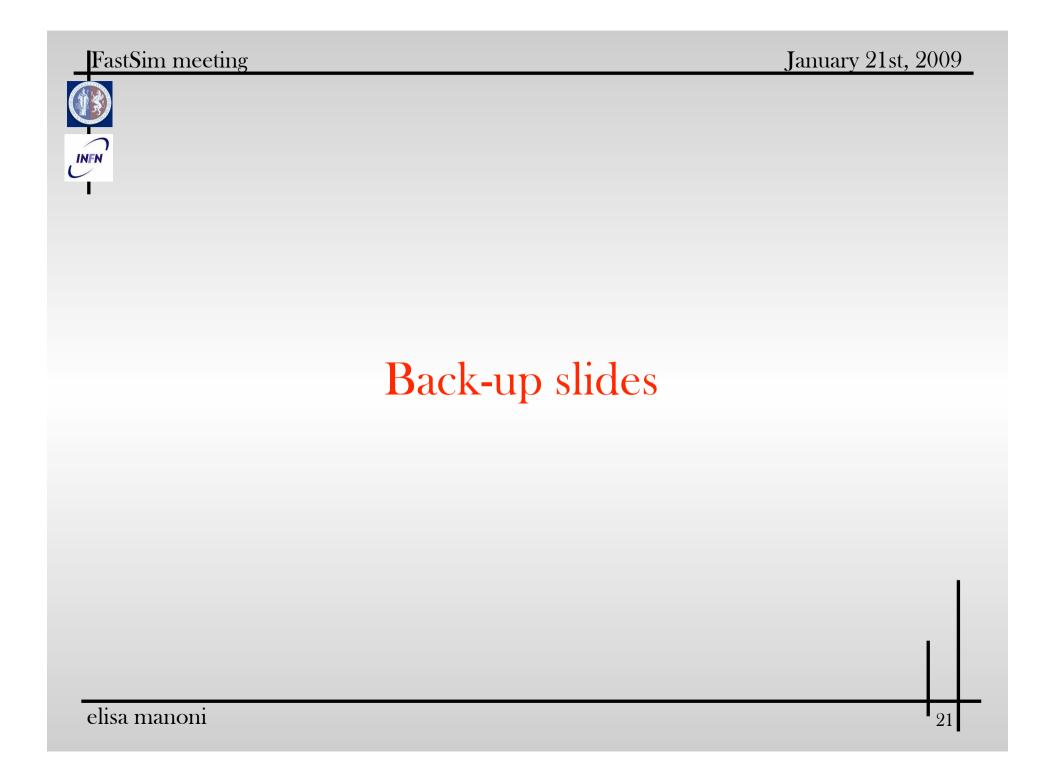
- ^k a mode by mode ΔE cut is applied both in the McGill sample (BRecoilTools
 + BRecoilUser) and in PacHadRecoilUser but the mode splitting is different between the two.
- * best candidate selection is slightly different (this shouldn't be the biggest effect)
- * cutting on purity, only some decay modes are retained;
 due to the k lund bug, B→DKX events falls in the B→DπX class,
 in particular B→D2Kπ (purity>50%) become B→D3π (purity<50%)
 I have computed that 8% of B⁺→D⁰X events and 11% of B⁰→D⁻X events
 are lost + other losses in the B→D*X modes

 \rightarrow need to repeat the study after the klund bug fix

To-do-list and conclusions

To-do-list : code issues

⁵ bug on K lund finally fixed


* thinks to be fixed before the production:

- multiple Breco candidates +++
- warning msgs +++
- modify code to implement to use bwd EMC as veto device +++
- R2 added as Usr Variables ++
- $B \rightarrow \tau \nu$ reconstruction optimization? ++
- $B \rightarrow K^{(*)}$ ll reconstruction implementation? ++
- validation code ++

To-do-list: Physics studies + documentation

Repeated FullSim vs FastSim comparison using MCGill sample (same skim as the one in use in BaBar): want to make a small production of generic BB event to check the agreement after the k lund bug fix

- ^k pending items:
 - signal efficiency studies for $B \rightarrow K^{(*)}vv$ with higher statistics (wrt frascati)
 - B-D vertex separation studies (are the variables in the ntuples ok for SVTers to study L0 option?)
 - write Wiki documentation

Hadronic Breco reconstruction in FastSim (I)

- SemiExclusive reconstruction implemented in FastSim: PacHadRecoilUserPackage
- * Package based on BaBar BTauSemiExclUser code
- * It contains:
 - main analysis tcl on which run the executable
 - tcl for skim emulation (based on FilterTools/BSemiExclPath.tcl)
 - tcl for PID selection (TableBasedXXXSelection selectors based on BaBar run6-r24c PID tables)
 - tcl and .cc / .hh for signal and tag side reconstruction and selection:
 B_{sig}→Kvv, K*vv, τv available
 - tcl for BtaTupleMaker settings
 - README

Hadronic Breco reconstruction in FastSim (II)

Breco side: limit the number of reconstructed modes channels according to their purity

- Breco mode classification: neat : purity > 80% , $\varepsilon_{neat} \approx O(10^{-4})$

clean : 50% < purity < 80% , $\varepsilon_{clean} \approx O(10^{-3}-10^{-2})$ dirty : 8%<purity<50% , $\varepsilon_{dirty} \approx O(10^{-2})$

 in some BaBar analysis (i.e. B→τν) only the cleanest Breco modes are used; same will be probably done with the high SuperB statistics

→ reconstruct only neat+clean modes

- * Bsig side:
 - $K^+ \nu \nu$
 - $K_s(\pi^+\pi^-)\nu\nu$
 - $K^{*+}(K_{s}\pi^{+}, K^{+}\pi^{0})\nu\nu$
 - $K^{*0}(K^{+}\pi^{-}) \nu \nu$
 - $\tau^+\nu$, with $\tau^+ \rightarrow e^+\nu\nu$, $\mu^+\nu\nu$, $\pi^+\nu$, $\rho^+(\pi^+\pi^0)\nu$, $a_1^+(\rho^0\pi^+)\nu$

Bsig channels in Nov. production

- * For the Sept. production only $Bsig \rightarrow K^* vv$ reconstruction implemented
 - ^{*k*} For the Nov. prod., added
 - Κνν , $K_{s}(\pi\pi)$ νν
 - τv , with $\tau \rightarrow evv$, μvv , πv , $\rho(\pi \pi^0)v$, $a_1(\rho \pi)v$
- * Output of the production: one ntuple containing the info on all the Bsig modes reconstructed in the recoil of a Had Breco
- * More than one Upsilon per event:
 - $\Upsilon 1 \rightarrow Brecol Bsig1$
 - $\Upsilon 2 \rightarrow Breco1 Bsig2$
 - Υ3→ Breco2 Bsig1
 - $\Upsilon 4 \rightarrow Breco3 Bsig1$
 - $\Upsilon 5 \rightarrow Breco3 Bsig2$
- * select best Breco according to smallest ΔE
- * if more than one Bsig is associated to the best Breco, select the one corresponding to the searched Bsig channel