Fast Simulation Meeting, Jan 21st 2010

SL recoil analyses and Bwd-EMC as a veto device

Alejandro Pérez,

A. Stocchi, N. Arnaud, L. Burmistrov

LAL – Université Paris XI

Outline

- Semi-leptonic Breco in FastSim (PacSemiLepRecoilUser)
- Bwd-EMC as a veto device
- Summary and outlook

Semileptonic Breco reconstruction philosophy

Search for B→D^(*)Iv

- Reconstruction steps:
 - Reconstruct D^(*)→hadrons

- Use D^(*) and add lepton (e[±], μ[±]) to form a D^(*)I candidate
- Sample of 14 decay modes (charged + neutrals)
- Kinematics is unconstrained due to neutrinos
- Relatively high reconstruction efficiency ~2%

Semileptonic Breco in FastSim (I)

- Semileptonic reconstruction implemented in FastSim V0.1.3: PacSemiLepRecoilUser
- Package based on BaBar BtauNuSemiLepUser code
- PacSemiLepRecoilUser contains:
 - main analysis tcl to run executable
 - tcl for DI reconstruction (BtoDInuSequence_KplusNuNu.tcl)
 - tcl for tag-side reconstruction refinements
 (PslTagBReconstruction_Kpnunu.tcl, PslTagBSelection_Kpnunu.tcl)
 - tcl for PID lists: for K, π, μ use tablebased selectors (BaBar run6-r24c PID tables)
 for e use NoDeDxFirstElectronSelection (E/p cut based)
 - tcl and .cc/.hh for signal reconstruction and selection:
 B→K⁺νν, K⁰ςνν, K*νν, τν (one-prong) are now available
 - tcl for BtaTupleMaker settings
 - README
- Package status:
 - Fixed bugs memory leaks that prevented to be in Sep and Nov test productions
 - Need to implement validation code and to write documentation (README)

Semileptonic Breco in FastSim (II)

Latest code improvements:

Several decay channels can be now reconstructed and stored in same n-tuple:

$$B \rightarrow K^+ \nu \nu$$
, $K^0_{S} \nu \nu$, $K^* \nu \nu$, $\tau (\rightarrow e \nu \nu, \mu \nu \nu, \pi \nu) \nu$

Added UsrData variable YsigBlsRecod which tells the reconstructed mode

```
\begin{split} \text{YsigBIsRecod} = & \text{ -1} & \Rightarrow \text{ no signal candidate} \\ 0 & \Rightarrow \text{ debugging} \\ 1,2,3,4,5 & \Rightarrow \tau \text{ modes } (\tau \rightarrow \text{evv}, \mu vv, \pi v, \rho v, a_1 v) \\ 6,7,8 & \Rightarrow \text{K*+vv modes } (\text{K*+} \rightarrow \text{K}^0_{\ \text{S}}(\rightarrow \pi^+\pi^-)\pi^+, \text{K}^0_{\ \text{S}}(\rightarrow \pi^0\pi^0)\pi^+, \text{K}^+\pi^0) \\ 9,10,11 & \Rightarrow \text{K*0vv modes } (\text{K*0} \rightarrow \text{K*}\pi^-, \text{K}^0_{\ \text{S}}(\rightarrow \pi^+\pi^-)\pi^0, \text{K}^0_{\ \text{S}}(\rightarrow \pi^0\pi^0)\pi^0) \\ 12,13,14 & \Rightarrow \text{Kvv modes } (\text{K*+vv}, \text{K}^0_{\ \text{S}}(\rightarrow \pi^+\pi^-)vv, \text{K}^0_{\ \text{S}}(\rightarrow \pi^0\pi^0)vv) \end{split}
```

- Added UsrData variable YsigBMatchedTauMode with truth decay mode (similar values as YsigBIsRecod)
- Added UsrData variable YSigBTruthMatchUp with different truth-matching levels.
 Useful for studying reconstruction effects (fake tracks and neutrals, SxF, ...)

```
YsigBTruthMatchUp = 1 \Rightarrow Brec daughters do match MC-truth 2 \Rightarrow Brec daughters come from same true B 3 \Rightarrow rec and true decay modes match 4 \Rightarrow strict truth-match
```

Similar IsRecod and TruthMatch variables are defined for the tag-side

Bwd-EMC as a veto device (I)

- Quite difficult to reconstruct π⁰s with at least one photon from Bwd-EMC (see Chih-hsiang talk at Frascati SuperB workshop, Dec 2009)
- Previously:
 - used Bwd-EMC as an extension of Barrel-Fwd-EMC, i.e. used neutrals from Bwd-EMC to reconstruct
 B_{tag} and B_{sig} candidates.
 - Obtained increase in signal efficiencies by adding badly reconstructed π^0 s, and background efficiencies increased accordingly
- Decided to use Bwd-EMC as a veto device. Define veto as follows:
 - Do not used neutrals from Bwd-EMC to reconstruct B_{taq} and B_{siq} candidates.
 - Define to types of E_{extra} variables
 - → E_{extra} (Barrel-Fwd) = Σ (extra neutrals on Barrel-Fwd EMC)
 - → E_{extra} (Bwd) = Σ (extra neutrals on Bwd EMC)
 - Can used $E_{\text{extra}}(\text{Bwd})$ to cut on and $E_{\text{extra}}(\text{Barrel-Fwd})$ to perform a fit
 - Currently E_{extra} (Barrel-Fwd) use photons with $E_{min} > 50 MeV$
 - Need to define a E_{min} cut (currently 30MeV) for Bwd-EMC photons (expected to depend on machine background), as well as a cut on E_{extra}(Bwd) (expected to be analysis dependent)
- Question: how non-recoil analysis with neutral in the final state (e.g. $B^+ \rightarrow \pi^+ \pi^0$) should use neutrals from Bwd-EMC?

Bwd-EMC as a veto device (II)

Separating E_{extra} on Barrel-Fwd and Bwd has several advantages:

- If $E_{extra}(Bwd)$ is not used on analysis is equivalent to not include Bwd-EMC \Rightarrow can test two detectors configurations at the same time: Bwd-EMC in/out!
- Above statement is not completely true (but almost)
 - Muon selectors performances should be modified due to additional material before Bwd-IFR. Currently not an issue as muon selector is implement as a TableBasedSelector.
 - → E/p cut based electron selector currently includes information from Bwd-EMC. It is only optimized for Barrel-Fwd, need to run a different optimization for the Bwd. Can the EMC people compare the selector performances for the Barrel-Fwd and Bwd?
 - If the performances of electron selector are not good enough, can exclude from the selection electrons hitting the Bwd-EMC.

Vetoing by cutting on E_{extra}(Bwd)

- Need to understand machine backgrounds. How good is the machine background simulation in FastSim?
- Veto is expected to be analysis dependent, as signal side can have different charged and neutral multiplicities. Plan just to define a cut which maximized significance.
- Question: how advanced are the studies about Bwd-EMC timing for K/π separation?

Bwd-EMC as a veto device (III)

As an example generated a signal sample of B⁺→K⁺vv

- Currently generating several modes ($B \rightarrow K^{(\star)+/0} \nu \nu, \tau \nu$, double-SL (charged and neutral)) to perform signal efficiency and background rejection studies
- Expects to use February production to perform an extensive analysis of BB and qq backgrounds

Summary and outlook

- PacSemiLepRecoilUser package is in V0.1.3
- The code has been debugged and cleaned from memory leak errors
- Several improvements have been performed:
 - Several decay channels can be stored on the same n-tuple
 - ⇒ Useful for performing background studies (e.g. BB and qq background)
 - Several levels of truth-matching implemented both on signal and tag sides
 - ⇒ useful for studying reconstruction effects (fake tracks and neutrals, SxF,...)
- It has been presented a proposition tu use the Bwd-EMC as a veto device.
- Still need to:
 - test de code
 - finish to implement validation code inside PacQA
 - finish documentation inside README and FastSim web page

(expects to finish by the beginning of next week)

The code is in a good shape for the February Production!

