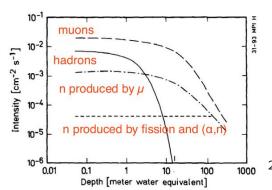

Summary of background simulations

Giulia D'Imperio

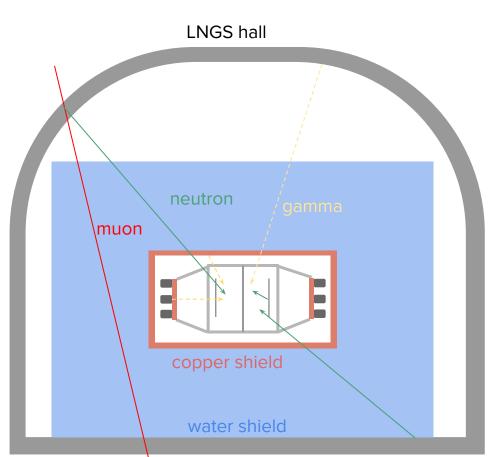
19/12/19
CYGNO General Meeting, Frascati

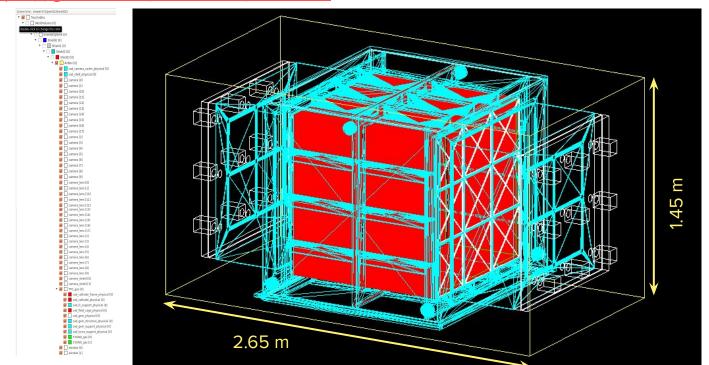
Signal and backgrounds


Most of the background from electron recoils caused by β/γ events

- Signal events produce nuclear recoil
- Neutrons produce nuclear recoils similar to a **WIMP**

Background sources:

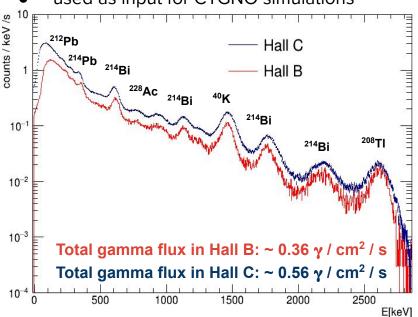

- Radioactivity of surroundings (laboratory environment)
- Radioactivity of detector and shield materials
- Cosmic rays and secondary reactions (need to go **underground**, LNGS 3700 mwe)

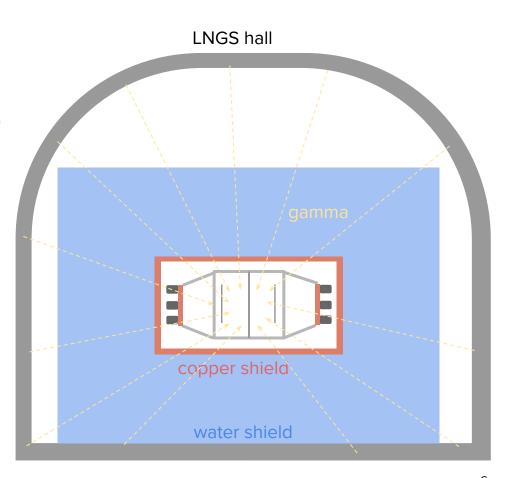

Background components

- Ambient neutrons/gammas (origin: outside setup, mostly rock)
- "Radiogenic" neutrons/gammas (origin: materials in setup)
- Cosmogenic neutrons (origin: muon interactions)

Geant4 simulation

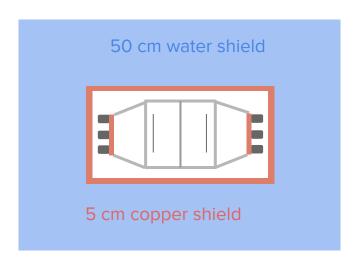
The simulation code is available in a repository in the CYGNUS-RD organization on github https://github.com/CYGNUS-RD/CYGNO-MC



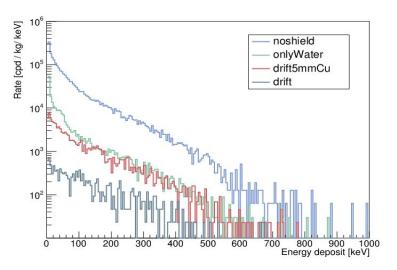

External background and shielding

studies

Ambient gammas

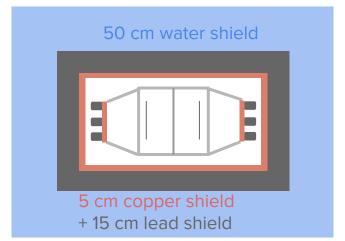

- Gammas mostly from **K**, **U** chain and **Th** chain
- Spectrum measured by SABRE collaboration(*)
- used as input for CYGNO simulations

Shielding option 1


1) 50 cm water + 5 cm Cu

Cost of materials:

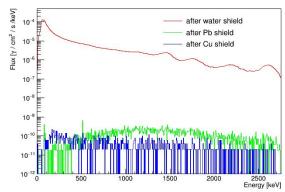
Cu: ~25 euro/kgLead: ~5 euro/kgPE: ~5 euro/kg

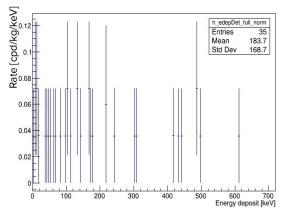

Material	Thickness [cm]	Mass [kg]	Cost [keuro]
Water	50	16e3	-
Cu	5	8.7e3	217.5

Rate [0-20] keV = $7 \cdot 10^2$ cpd/kg/keV \rightarrow 8 10^6 cts/yr in CYGNO detector

Shielding option 2

2) 50 cm water + 15 cm Pb + 5 cm Cu



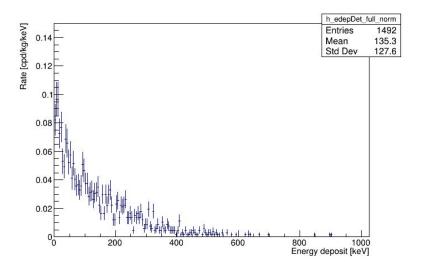

Cost of materials:

Cu: ~25 euro/kgLead: ~5 euro/kg

- PE: ~5 euro/kg

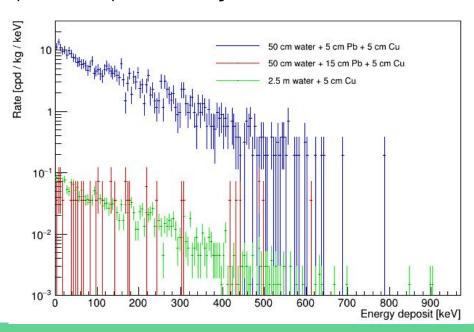
Material	Material Thickness [cm]		*Cost [keuro]	
Water	50	16e3	-	
Pb	15	42e3	210	
Cu	5	9e3	225	

Shielding option 3

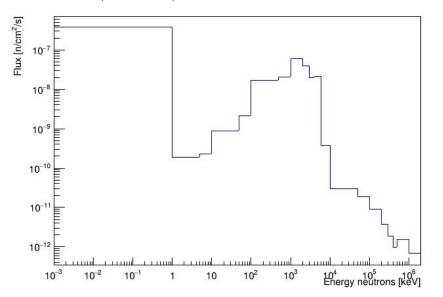

3) 250 cm water + 5 cm Cu

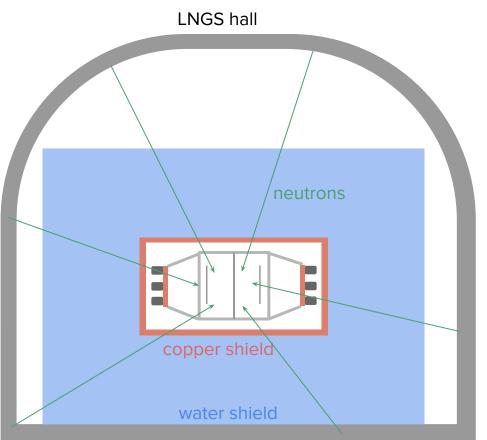
Cost of materials:

Cu: ~25 euro/kg
Lead: ~5 euro/kg
PE: ~5 euro/kg

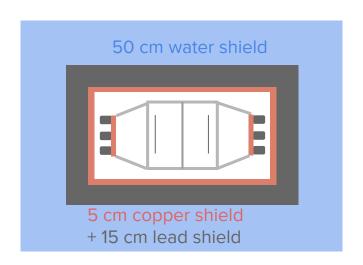

Volume	Material	Thickness [cm]	Mass [kg]	Cost [keuro]
Shield2	Water	250	312e3	-
Shield3	Cu	5	8.7e3	217.5

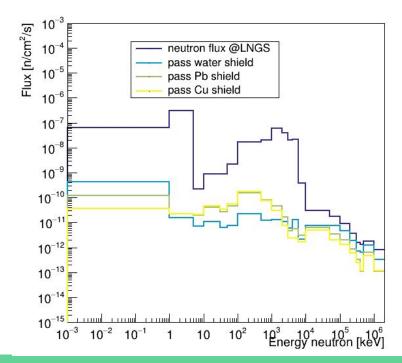
Background from ambient gammas


Goal total background < 10⁴ evt/yr

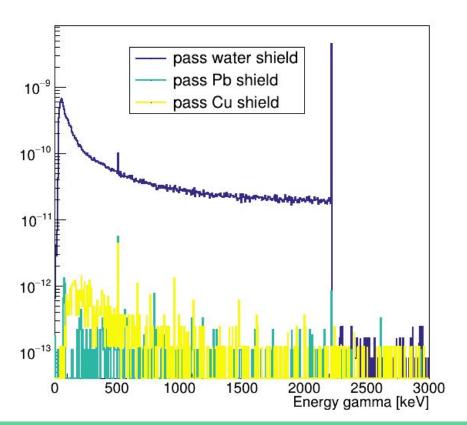

- → option 1 unacceptable 8 10⁶ cts/yr
- → both options (2 and 3) ~10³ evt/yr

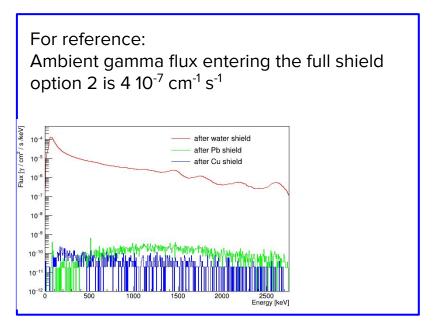
Ambient neutrons


- Ambient neutrons from radioactivity in the rock
- Spectrum from CUORE MC
 - → measurements Belli/Arneodo (<10 MeV) and Hime (>10 MeV)

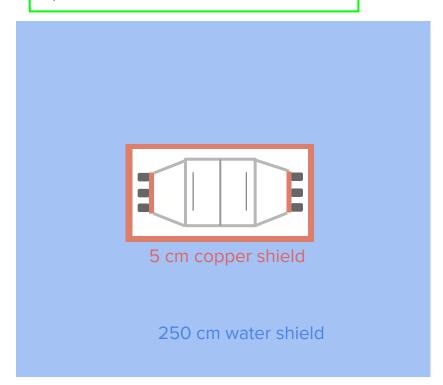


Neutron flux with shield option 2 Neutron Flux @LNGS 2.55e-06 cm^-2 s^-1


2) 50 cm water + 15 cm Pb + 5 cm Cu


Neutron Flux @LNGS 2.55e-06 cm^-2 s^-1
Neutron Flux after water shield 2.16e-09 cm^-2 s^-1
Neutron Flux after Pb shield 2.31e-09 cm^-2 s^-1
Neutron Flux after Cu shield 1.76e-09 cm^-2 s^-1

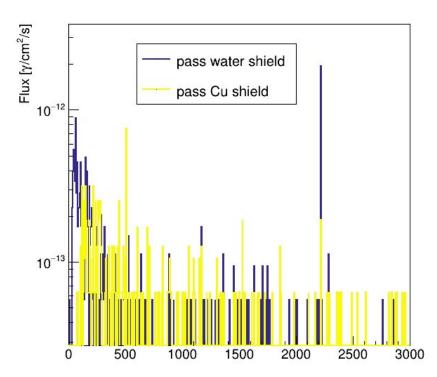
Secondary gamma flux with shield option 2



Gamma Flux after water shield 1.45e-07 cm^-2 s^-1 Gamma Flux after Pb shield 1.84e-10 cm^-2 s^-1 Gamma Flux after Cu shield 4.21e-10 cm^-2 s^-1


Neutron flux with shield option 3

2) 250 cm water + 5 cm Cu

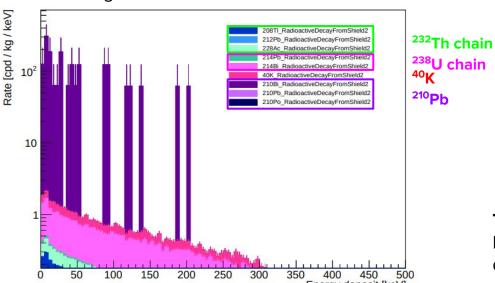


Neutron Flux @LNGS 2.55e-06 cm^-2 s^-1 Neutron Flux after water shield 1.41e-10 cm^-2 s^-1 Neutron Flux after Cu shield 6.31e-11 cm^-2 s^-1

~30 times better than option 2

Secondary gamma flux with shield option 3

Gamma Flux after water shield 9.89e-11 cm^-2 s^-1 Gamma Flux after Cu shield 6.97e-11 cm^-2 s^-1 **"6 time better than option 2**


For reference:

Ambient gamma flux entering the full shield option 2 is 4 10⁻⁷ cm⁻¹ s⁻¹

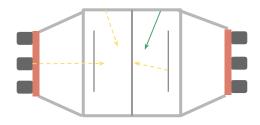
Not enough statistics to produce a background spectrum, but expected to be small.

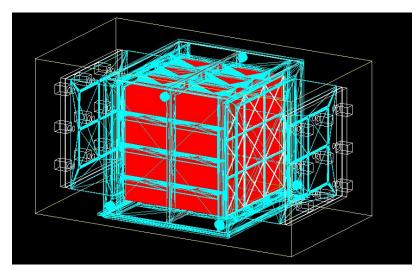
Radioactivity background of lead shield (OPERA)

- Energy deposit in CYGNO detector from lead shield radioactivity
- assume ²¹⁰Pb of OPERA lead
- U, Th, K activities from T-REX paper (arxiv <u>1812.04519</u>)
- shielding made of 50 cm water + **5 cm Pb** + 5 cm Cu

	Activity [mBq/kg]	Rate [cts/yr]
²³⁸ U	0.33	11.2 10 ³
²¹⁰ Pb	10 ⁵	1.97 10 ⁶
²³² Th	0.10	4.51 10 ³
⁴⁰ K	1.2	4.6 10 ³

Total rate 2 10⁶ cts/yr

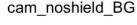

Even a 5 cm-thick shield of lead for 1 m³ detector gives a large background, unless using archaeological lead.

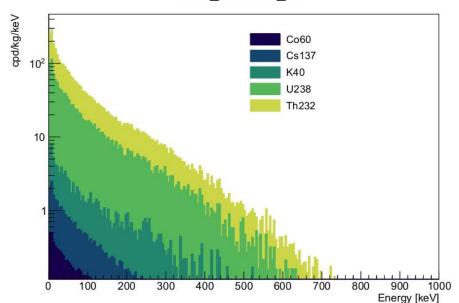

Summary shielding options

- 50 cm water + 15 cm Pb + 5 cm Cu is good in terms of
 - o ambient gammas
- o neutrons and secondary gammas
 - compact size
 - → But
- expensive
 - o need to use archaeological lead (even more expensive), otherwise too radioactive
- 2.5 m water + copper (no lead) shielding is good in terms of
 - ambient gammas
 - neutrons and secondary gammas
- iow radioactivity
 - low cost
 - → But
- 🔀 🜼 large size

Internal backgrounds

Radioactivity of materials

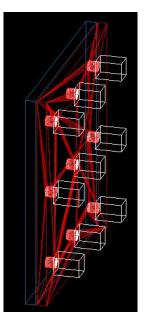

- natural radioactivity: U, Th and K
- radon
- cosmogenically activated isotopes
- alpha, beta, gamma, neutrons can come from radioactivity
- → usually the most worrisome backgrounds are internal (externals can be shielded)
- → Careful evaluation of the material activities is important to predict the background


Camera radioactivity

Measured with HPGE at LNGS High content of U, Th and K in the camera body, mostly K in the camera lens

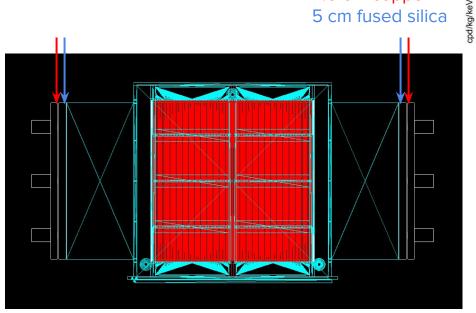
Camera lens Camera body sample: objective of Hamamatsu orcaflash4.0, 213.5 q (with plastic cap), CYGNO camera, Hamamatsu, orca-flash4.0, 2.1275 kg, CYGNO sample: number: number: live time: 504104 s live time: 83383 S detector: GePaolo detector: GeMPI radionuclide concentrations: radionuclide concentrations: Th-232: Th-232: Ra-228: (0.077 +- 0.009) Bg/pc (2.1 + - 0.2) Bq/pc Ra-228: Th-228: (0.078 +- 0.006) Bq/pc Th-228: (2.1 +- 0.1) Bq/pc U-238: Ra-226 (0.41 +- 0.02) Bq/pc U-238: (0.9 +- 0.3) Bq/pc Pa-234m Ra-226 (1.8 + - 0.1) Bq/pc (7 +- 2) Bq/pcPa-234m U-235: (0.031 +- 0.008) Bg/pc U-235: (0.4 +- 0.1) Bq/pc K-40: (11 +- 1) Bq/pc K-40: (1.9 +- 0.3) Bg/pc Cs-137: < 0.0057 Bg/pc Cs-137: (0.09 +- 0.03) Bq/pc Co-60: < 0.0099 Bg/pc @ start of measurement: 10-JUL-2018 @ start of measurement: 12-JUL-2018 Co-60: < 0.012 Bq/pc La-138: (0.52 +- 0.04) Bq/pc

Background from cameras (body + lens)

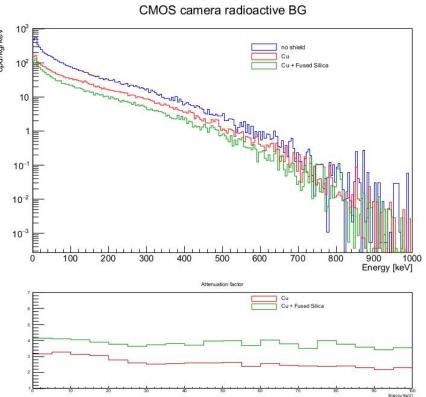


Energy deposit in CYGNO detector:

- Events in [0-20] keV: **2.05** x **10**⁷ cpy


We investigated the effect of a copper shielding to the camera body and a fused silica layer between lens and acrylic box

4.5 cm copper 5 cm fused silica


Study for camera shielding

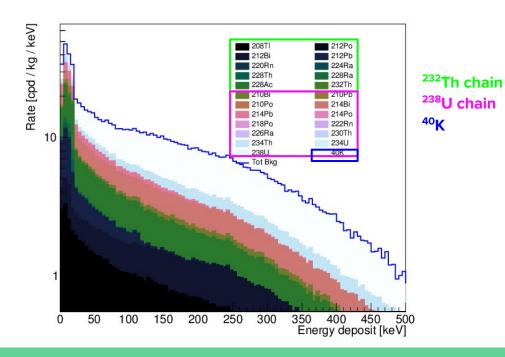
4.5 cm copper

Energy deposit in CYGNO detector:

- Events in [0-20] keV: **6.60** x **10**⁶ cpy
- shielding is not sufficient

Radioactivity of acrylic box

- U, Th, K activities from M.Laubenstein measurements @LNGS (upper limits)
- Radiopurity.org measurements for acrylic/plexiglass depend form the sample (ex. SNO acrylic much lower radioactivity)


	Activity [mBq/kg]	Concentration [ppb]		
²³⁸ U	< 3.5 (²²⁶ Ra)	< 0.28		
²³² Th	< 5 ⁽²²⁸ Ra) < 4.5 (²¹² Pb)	< 1.2 < 1.1		
⁴⁰ K	< 35	<1.1 10³		

From radiopurity.org

Grouping	Name	Isotope	Amount	Isotope	Amount		
▶ ILIAS UKDM	Acrylic, Plexiglass	Th-232	4 ppb	U-238	10 ppb	***	×
▶ ILIAS UKDM	Acrylic, Polycast, UVT 450	Th-232	1.2 ppb	U-238	1.2 ppb	***	×
▶ EXO (2008)	SNO acrylic	Th	14 ppt	U	24 ppt	***	ж
▶ ILIAS UKDM	Acrylic, Lucite, RAL stores	Th-232	0.64 ppb	U-238	3 ppb	***	×
▶ TEST	Acrylic, Perspex, Harris Spur Ltd	Th-232	0.01 ppb	U-238	0.01 ppb		×
▶ EXO (2008)	SNO acrylic	Th	1.1 ppt	U	1.1 ppt		ж

Radioactivity background from Acrylic Box

- Use U, Th, K activities from M.Laubenstein measurements @LNGS (upper limits)
- Energy deposit in CYGNO detector from la **2 cm thick** acrylic box (~200 kg)

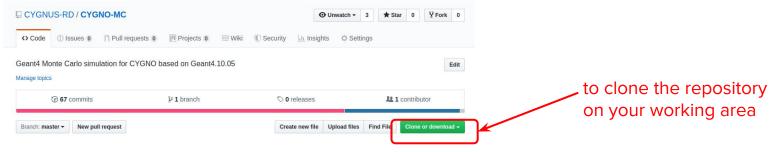
rac

Total rate $< 4.5 \ 10^5 \ cts/yr \ in [0-20] \ keV$

→ need more precise measurement of radioactivity

With radiopure acrylic (for ex. SNO acrylic or similar) this background could be much reduced

Status background study & to do


- Cameras (body+lens) are the most radioactive element of the setup
- Understand what part of the camera body is most radioactive
 - → dismounted camera now under measurement at LNGS (results expected in january 2020)
- To do: systematic background budget, starting from the parts close to the sensitive region (GEM, field cage, etc..)

Backup

GEANT4 simulation repository

The simulation code is available in a repository in the CYGNUS-RD organization on github https://github.com/CYGNUS-RD/CYGN0-MC

- need github account (free) and membership of CYGNUS-RD (contact Emanuele Di Marco)
- then we can add collaborators to CYGNO-MC repository with read and/or write permissions
- instructions to setup and run the code are available in the README file in the repository

Working area:

- for simple tests, can be run in local
- pre-requisites ROOT, GEANT4, CadMesh (all open source and free software)
- for MC production Roma group is working on Roma3 cluster ui7-01.roma3.infn.it
- working area @LNGS farm?

Table of shielding materials and costs

Cost of materials:

Cu: ~25 euro/kgLead: ~5 euro/kg

- PE: ~5 euro/kg

50 cm water + 5 cm Cu

Volume	Material	Thickness [cm]	Mass [kg]	Cost [keuro]
Shield2	Water	50	16e3	-
Shield3	Cu	5	8.7e3	217.5

50 cm water + 10 cm Pb + 2 cm Cu

Volume	Material	Thickness [cm]	Mass [kg]	Cost [keuro]
Shield1	Water	50	19e3	-
Shield2	Pb	10	24e3	120
Shield3	Cu	2	3.3e3	82.5

50 cm water + 15 cm Pb + 5 cm Cu

Volume	Material	Thickness [cm]	Mass [kg]	*Cost [keuro]
Shield1	Water	50	16e3	-
Shield2	Pb	15	42e3	210
Shield3	Cu	5	9e3	225

only PE

Volume	Material	Thickness [cm]	Mass [kg]	Cost [keuro]
Shield3	PE	50	15e3	75

Lead shield radioactivity

- The highest background contribution from lead is ²¹⁰Pb
- ²¹⁰Pb is not in equilibrium with ²³⁸U decay chain
- half life of ²¹⁰Pb is quite long (22 years)
- ²¹⁰Pb daughters have shorter half life, therefore they are in equilibrium with ²¹⁰Pb
- commercial lead has typically several 100 Bq/kg of ²¹⁰Pb.
 OPERA lead available at LNGS has 80 Bq/kg, CUORE roman Pb has <4 mBq/Kg activity
- 210Pb → 100% BR beta decay with q-value 63.5 keV
- 210Bi → 100% BR beta decay with q-value 1162.1 keV
 bremsstrahlung gives significant contribution to bkg
- 210Po → 100% BR alpha q-value 5407.4 keV

$T_{1/2}$	Isotope	$E_{\alpha}(\text{MeV})$	I (%)	Activity
$4.468 \cdot 10^9 y$	^{238}U	5-11-6-21		D. STORE CO.
24.1 d	$\begin{array}{c}\downarrow\alpha\\^{234}Th\\\downarrow\beta\end{array}$	4.18	99.9	A0
1.17m	^{234m}Pa			
$2.455 \cdot 10^5 y$	$_{^{234}U}^{\downarroweta}$			
$7.538 \cdot 10^4 y$	$\downarrow \alpha$ ^{230}Th	4.75	99.8	A1
1600 y	$\downarrow \alpha$ ^{226}Ra	4.66	99.7	A2
3.8 d		4.78	94.4	A3
	$\downarrow \alpha$ $^{218}P\alpha$	5.49	99.9	A3
3.10 m	$\downarrow \alpha$	6.00	99.9	A3
26.8m	^{214}Pb $\downarrow \beta$			
19.9m	^{214}Bi			
$164.3 \mu s(*)$	$_{214}^{\downarrow\beta}Po$			
22.3 y	$\downarrow \alpha$ ^{210}Pb	7.69	99.9	A3
5.01 d	$\downarrow \beta$ ^{210}Bi			
	$\downarrow \beta$			
138.4 d	^{210}Po $^{\perp}\alpha$	5.30	100	A4
Stable	^{206}Pb	5.00	100	111

Radioactivity of materials

#	Material, Supplier	Method	Unit	^{238}U	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	^{235}U	40 K	⁶⁰ Co	$^{137}\mathrm{Cs}$
1	Pb, Mifer	GDMS	mBq/kg	0.33		0.10			1.2		
2	OFE Cu, Luvata	GDMS	mBq/kg	< 0.012		< 0.0041			0.061		
3	ETP Cu, Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020					
4	ETP Cu, Sanmetal	Ge Oroel	mBq/kg	<27	< 1.0	< 1.1	< 0.76	< 0.56	< 3.1	0.24 ± 0.0	0.29
5	PFA tube, Emtecnik	Ge Paquito	mBq/m	<31	< 0.58	< 0.53	< 0.34	< 0.29	< 2.6	< 0.16	< 0.18
6	PTFE tube, Tecnyfluor	Ge Paquito	mBq/m	<19	< 0.48	< 0.54	< 0.41	< 0.26	< 2.5	< 0.14	< 0.17
7	Kapton-Cu PCB, LabCircuits	Ge Paquito	$\mu \mathrm{Bq/cm^2}$	<42	<1.3	<1.1	< 0.66	< 0.41	< 4.0	< 0.24	< 0.28
8	Epoxy Hysol, Henkel	Ge Paquito	mBq/kg	<273	<16	< 20	< 16		<83	< 4.2	< 4.5
9	SM5D resistor, Finechem	Ge Paquito	mBq/pc	0.4 ± 0.2	0.022 ± 0.007	< 0.023	< 0.016	0.012 ± 0.003	50.17 ± 0.07	< 0.005	< 0.005
10	Mylar, Goodfellow	Ge Paquito	$\mu Bq/cm^2$	<29	< 0.59	< 0.80	< 0.36	< 0.29	< 3.3	< 0.18	< 0.21
11	Nylon (3D printer), CNM	Ge Latuca	mBq/kg	< 436	< 9.2	<11	< 3.4	< 2.6	<29	< 1.0	< 1.2
12	Nylon (3D printer), CNM	ICPMS	mBq/kg	36		2.9					
13	Teflon, Sanmetal	ICPMS	mBq/kg	< 0.062		< 0.041					
14	Extruded PTFE, Gore	ICPMS	mBq/kg	< 0.124		< 0.041					
15	Gold connectors, Fujipoly	Ge Paquito	mBq/pc	<25	4.45 ± 0.65	1.15 ± 0.35	0.80 ± 0.19		7.3 ± 2.6	< 0.1	< 0.4
16	Silver connectors, Fujipoly	Ge Paquito	mBq/pc	< 55	5.68 ± 0.81	6.1 ± 1.1	6.17 ± 0.72		12.2 ± 3.8	< 0.3	< 0.3
17	Carbon connectors, Fujipoly	Ge Paquito	mBq/pc	14.5 ± 6.0	2.77 ± 0.38	1.17 ± 0.23	1.14 ± 0.14		7.5 ± 2.3	< 0.1	< 0.1
18	Final Gold connectors, Fujipoly	Ge Paquito	mBq/pc	<12	2.80 ± 0.38	0.49 ± 0.10	0.58 ± 0.09		5.3 ± 1.6	< 0.08	< 0.07
19	Kapton connectors, Samtec	Ge Paquito	mBq/pc	< 3.6	< 0.065	< 0.072	< 0.040	0.043 ± 0.013	5 < 0.32	< 0.020	< 0.021
20	Flat cable, Somacis	Ge Paquito	mBq/pc	<14	0.44 ± 0.12	< 0.33	< 0.19	< 0.19	1.8 ± 0.7	< 0.09	< 0.10
21	Teflon cable, Druflon	Ge Paquito	mBq/kg	< 104	< 2.2	< 3.7	< 1.7	< 1.4	21.6 ± 7.4	< 0.7	< 0.8
22	Coaxial cable, Axon	Ge Paquito	mBq/kg	<650	<24	<15	< 9.9	< 7.9	163 ± 55	< 4.3	< 5.1
23	Electronic board, CEA	Ge Paquito	Bq/kg	94 ± 38	41.4 ± 5.6	59 ± 10	53.6 ± 7.4		19.5 ± 6.1	< 0.67	< 1.1
24	AGET chips, CEA	Ge Paquito	mBq/pc	< 8.7	0.48 ± 0.07	0.16 ± 0.06	0.47 ± 0.09		0.83 ± 0.29	< 0.04	< 0.04
25	Ceramic AGET chips, CEA	Ge Paquito	mBq/unit	$(0.64\pm0.24)10$	3539 ± 94	116 ± 20	113 ± 21		43 ± 14	< 2.2	
26	Classical micromegas, CAST	Ge Paquito	$\mu \mathrm{Bq/cm^2}$	< 40		4.6 ± 1.6		< 6.2	< 46	< 3.1	
27	Microbulk MM, CAST	Ge Paquito	$\mu \mathrm{Bq/cm^2}$	26 ± 14		< 9.3		<14	57±25	< 3.1	
28	Kapton-Cu foil, CERN	Ge Paquito	$\mu Bq/cm^2$	<11		< 4.6		< 3.1	< 7.7	< 1.6	
29	Cu-kapton-Cu foil, CERN	Ge Paquito	$\mu Bq/cm^2$	<11		< 4.6		< 3.1	< 7.7	< 1.6	
30	Microbulk MM, CERN	Ge Latuca	$\mu Bq/cm^2$	<49	< 0.70	< 1.2	< 0.35	< 0.22	< 2.3	< 0.14	< 0.13
31	Micromegas GEM, CERN	Ge Oroel	$\mu Bq/cm^2$	< 5.2	< 0.10	< 0.22	< 0.08	< 0.03	3.45 ± 0.40	< 0.02	< 0.02
32	Micromegas GEM 1 st cleaning	Ge Oroel	$\mu Bq/cm^2$	7.41 ± 0.81	< 0.21	0.19 ± 0.05	< 0.11	0.36 ± 0.04	0.84 ± 0.16	< 0.02	< 0.03
33	Micromegas GEM 2^{nd} cleaning	Ge Oroel	$\mu Bq/cm^2$	7.87 ± 0.89	< 0.17	0.14 ± 0.04	0.07 ± 0.02	0.36 ± 0.04	0.81 ± 0.15	< 0.03	< 0.02
34	Pyralux, Saclay	Ge Paquito	$\mu Bq/cm^2$	<19	< 0.61	< 0.63	< 0.72	< 0.19	4.6 ± 1.9	< 0.10	< 0.14
35	Isotac adhesive, 3M	Ge Paquito	$\mu Bq/cm^2$	<18	< 0.45	< 0.43	< 0.22	< 0.18	< 2.3	< 0.10	< 0.14
36	Stainless steel mesh	Ge Paquito	$\mu Bq/cm^2$	<53	< 1.5	< 1.7	< 0.9	< 0.6	< 8.7	< 0.3	< 0.5
37	Micromegas, CNM	Ge Paquito	$\mu \mathrm{Bq/cm^2}$	< 462	<10	<11	< 6.3	< 4.5	<61	< 3.8	< 3.7
#	Material, Supplier	Method	Unit		$^{214}\mathrm{Bi}$	208 Tl					
38	Microbulk MM, CAST	BiPo-3	$\mu \mathrm{Bq/cm^2}$		< 0.134	< 0.035					
39	Cu-kapton-Cu foil, CERN	BiPo-3	$\mu \mathrm{Bq/cm^2}$		< 0.141	< 0.012					
40	Microbulk MM, CERN	BiPo-3	$\mu \mathrm{Bq/cm^2}$		< 0.045	< 0.014					
41	Kapton-epoxy foil, CERN	BiPo-3	$\mu Bq/cm^2$		< 0.033	< 0.008					
42	Pyralux foil, Saclay	BiPo-3	$\mu \mathrm{Bq/cm^2}$		< 0.032	< 0.013					
	A		/ 1/			-2.00					

From T-REX screening campaign

http://arxiv.org/abs/181 2.04519v1

Radioactivity GEM

< 0.046 mBq/pc

Co-60:

```
sample: GEM, copper clad Kapton foil, 12.3 g, CYGNO
number: 2
Th-232:
Ra-228:
              < 0.19 mBq/pc
Th-228:
                  < 0.096 mBq/pc
U-238:
Ra-226
       (0.2 +- 0.1) \text{ mBq/pc}
Th-234
       (1.0 +- 0.4) \text{ mBq/pc}
Pa-234m
                  < 5.0 \text{ mBq/pc}
            < 0.097 mBq/pc
U-235:
K-40:
            < 2.2 \text{ mBq/pc}
Cs-137:
                 < 0.050 mBq/pc
```

31

Radioactivity GEM frame

```
sample: GEM, frame with copper clad kapton foil, 150 g, CYGNO
number: 2
Th-232:
Ra-228: (3.4 +- 0.2) Bq/pc
Th-228:
              (3.4 +- 0.2) Bq/pc
U-238:
Ra-226
      (2.6 +- 0.1) Bq/pc
Pa-234m
         (3.1 +- 0.4) Bq/pc
U-235: (0.14 +- 0.02) Bg/pc
K-40: (5.0 +- 0.5) Bq/pc
              < 0.0033 Bq/pc
Cs-137:
Co-60:
      < 0.0083 Bg/pc
```