GCR variability

_PF 2000000000000 GS reconstruction

Monte Carlo simulation

Results

Conclusions

Grad-Shafranov reconstruction and Monte Carlo simulation: effects of magnetic clouds during galactic cosmic-ray Forbush decreases as observed on board LISA Pathfinder

Simone Benella¹

Catia Grimani¹, Monica Laurenza², Giuseppe Consolini²

¹ Università degli Studi di Urbino "Carlo Bo" — DiSPeA, Istituto Nazionale di Fisica Nucleare — Sezione di Firenze

²INAF — Istituto di Astrofisica e Planetologia Spaziali, Roma

INFN 2 Dicembre 2019, Sesto Fiorentino

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 0000000	Conclusions
Outline					

- GCR flux variability
- LISA Pathfinder mission
- Grad-Shafranov reconstruction
- Monte Carlo simulation on magnetic clouds
- The August 2, 2016 Forbush decrease on board LPF

GCR variability ●000000	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Galact	ic cosmic-ray flu	x variability			

GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions
000000	00000000000	0000	000000	00000000	00000
Galactic cosmi	c rays				

Composition

Proton 90% Helium nuclei 8% Electrons 1% Heavy nuclei 1%

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
GCR flux varial	oility				

Long-term variations

GCR flux variations occurring over periods of time longer than one year resulting mainly correlated with the 11-year solar activity cycle and the 22-year global solar magnetic field polarity reversal. It is worthwhile to recall that the solar polarity is called positive (negative) when the solar magnetic field lines are directed outward (inward) from (to) the Sun North Pole.

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
GCR flux var	iability				

Short-term variations

GCR flux variations lasting less than one month in response to interplanetary processes such as corotating interaction regions, originated by the interaction between slow and fast solar wind streams, interplanetary coronal mass ejections (ICMEs), heliospheric current sheet crossings and others.

M. Armano et al., The Astrophysical Journal 854.2 (2018): 113

GCR variability	LPF		Monte Carlo simulation	Results	Conclusions
0000000					
GCR flux short-term variations					

Recurrent variations

GCR flux short-term variations associated with interplanetary disturbances originated by long-living structures on the Sun, e.g. coronal holes

Transient variations

GCR flux short-term variations originated by interaction with transient/sporadic solar wind disturbances, e.g. Interplanetary coronal mass ejections (ICMEs)

GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions
GCR recurrent	short-term variati	ons			

- CIRs are regions of compressed solar wind plasma due to the interaction between slow and high speed solar wind streams
- High speed solar wind streams are originated at the Sun by coronal holes
- Periodicities related to the sun rotation period are present in GCR short-term variations

I G Richardson, Space Science Reviews, 111(3-4) :267-376 2004

GCR transier	nt short-term var	iations. Forbush	decreases		
000000	0000000000	0000	000000	0000000	00000
GCR variability	LPF		Monte Carlo simulation	Results	Conclusions

A Forbush decrease is a sudden drop in the observed GCR intensity due to the passage of an ICME

H. V. Cane, 2000, SSRv, 93, 55

urbulent Shea Earth S ICME man Shock effect only Shock + ICME effect

Sun

I. G. Richardson and H. V. Cane, Solar Physics 270.2 (2011) : 609-627

GCR variability	LPF ●0000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions 00000
The LI	SA Pathfinder mis	ssion			

GCR variability	LPF 0●000000000	GS reconstruction	Monte Carlo simulation	Results 0000000	Conclusions
LISA Pathfinde	r				

Mission end Jul 18, 2017

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
	0000000000			
LISA Pathfind	er orbit			

- LPF orbit was around the Earth-Sun Lagrangian point L1 at about 1.5 million km from Earth
- The orbit was inclined at about 45 degrees on the ecliptic plane
- LPF took 6 months to complete the orbit
- The satellite spinned on its own axis in 6 months

M Landgraf, et al., Classical and Quantum Gravity, 22(10) :S487, 2005

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
	0000000000			
Particle Detec	tor			

I Mateos, et al., Journal of Physics : Conference Series. Vol. 228. No. 1. IOP Publishing, 2010

Two silicon wafers 1.4x1.05x0.03 cm³ inside a shielding copper box 6.4 mm thick

- Maximum allowed detector counting rate : 6500 counts s⁻¹
- Acquisition rate 0.067 Hz (15 counts s^{-1})
- Integral proton and helium fluxes above 70 MeV n⁻¹

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
	0000000000			
Particle Detec	ctor Data			

M. Armano et al., The Astrophysical Journal 854.2 (2018): 113

- LPF Particle Detector data from 2016 February 18 to 2017 July 3
- Hourly averaged data in order to limit the statistical uncertainty to 1%

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
	0000000000			
Periodicity a	analysis: empirica			

- No "a priori" assumptions on the basis functions
- Useful for non-linear and non-stationary datasets (Huang et al., 1998)

$$X(t) = \sum_{i=1}^{N} C_i(t) + r(t)$$

- The functions $C_i(t)$ are called Intrinsic Mode Function (IMF) and r(t) is the residue of the decomposition
- Finite and small number of IMFs

N E Huang, et al., Proceedings of the Royal Society of London A : mathematical, physical and engineering sciences. Vol. 454. No. 1971. The Royal Society, 1998

G Rilling, P Flandrin, P Goncalves., IEEE-EURASIP workshop on nonlinear signal and image processing. Vol. 3. NSIP-03, Grado (I), 2003

Periodicity analysis: empirical mode decomposition

IMF#	Mean Period (days)
1 2 3	0.12 ± 0.01 0.21 ± 0.01 0.41 ± 0.01
4	0.81 ± 0.01
5	1.78 ± 0.03
6	3.8 ± 0.1
7	10.3 ± 0.3
8	14.1 ± 0.6
9	27.6 ± 1.0
10	46.3 ± 3.0
11	87.9 ± 7.1

C Grimani et al., Nuovo Cim. 42 (2019) : 42

MFs

	00000000000			
GCR variability	LPF	Monte Carlo simulation	Results	Conclusions

Periodicity analysis: empirical mode decomposition

- intrinsic mode functions # 7-9 show that periodicities of 9, 13.5, and 27 days, related to the Sun rotation, are present
- the comparison between the residue of the EMD and the observed sunspot number shows that the GCR count rate presents an increasing trend over the mission lifetime due to the decreasing solar activity

S Benella et al., 36th International Cosmic Ray Conference (ICRC2019). Vol. 36. 2019

	000000000000	0000		0000000	00000
Bartels Rc	ntation 2495 (20 Jui				

GCR variability	LPF 000000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions 00000
Bartels Rota	ation 2496 (17 Jul	2016 – 13 Aug 2	2016)		

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
	0000000000			
Bartels Rota	tion 2497 (13 Au			

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Con OO

The Grad-Shafranov reconstruction

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Grad-Shafrano	v reconstruction				•

"I'll pause for a moment so you can let this information sink in."

Cartoon presented in Prof. Sonnerup's Van Allen Lecture at the 2010 AGU Fall Meeting

(New Yorker Magazine, available from http://www.newyorker.com/cartoons/a15439)

L-N Hau, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 104.A4 (1999): 6899-6917 Q Hu, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 107.A7 (2002) C Mösti et al., Sol. Phys. 256 (2009) 427-441

GCR variability	LPF 0000000000	GS reconstruction ○●○○	Monte Carlo simulation	Results 0000000	Conclusions
Grad-Shafrano	v reconstruction				•

Equilibrium equation for plasma structures

 $\nabla p = \mathbf{j} \times \mathbf{B}$

"I'll pause for a moment so you can let this information sink in."

Cartoon presented in Prof. Sonnerup's Van Allen Lecture at the 2010 AGU Fall Meeting

(New Yorker Magazine, available from http://www.newyorker.com/cartoons/a15439)

L-N Hau, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 104.A4 (1999): 6899-6917 Q Hu, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 107.A7 (2002) C Möstl et al., Sol. Phys. 256 (2009) 427-441

GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions
Grad-Shafrano	v reconstruction				

Equilibrium equation for plasma structures

 $abla p = \mathbf{j} \times \mathbf{B}$

 For 2D quasi-stationary magnetic field structure, in a reference frame moving with the structure, the equilibrium equation can be written as a Grad-Shafranov (GS) plane equation (Hau and Sonnerup, 1999)

$$\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} = -\mu_0 \frac{d}{dA} \underbrace{\left(\rho + \frac{B_z^2}{2\mu_0}\right)}_{P_t}$$

where \hat{z} is the invariant direction, $\partial/\partial z = 0$

L-N Hau, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 104.A4 (1999): 6899-6917 Q Hu, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 107.A7 (2002) C Möstl et al., Sol. Phys. 256 (2009) 427-441

"I'll pause for a moment so you can let this information sink in."

Cartoon presented in Prof. Sonnerup's Van Allen Lecture at the 2010 AGU Fall Meeting

(New Yorker Magazine, available from http://www.newyorker.com/cartoons/a15439)

GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions
0000000	00000000000	0000	000000	00000000	00000
Grad-Shafrano	v reconstruction				

Equilibrium equation for plasma structures

 $abla p = \mathbf{j} \times \mathbf{B}$

 For 2D quasi-stationary magnetic field structure, in a reference frame moving with the structure, the equilibrium equation can be written as a Grad-Shafranov (GS) plane equation (Hau and Sonnerup, 1999)

$$\frac{\partial^2 A}{\partial x^2} + \frac{\partial^2 A}{\partial y^2} = -\mu_0 \frac{d}{dA} \underbrace{\left(\rho + \frac{B_z^2}{2\mu_0}\right)}_{P_t}$$

where \hat{z} is the invariant direction, $\partial/\partial z = 0$

•
$$\boldsymbol{B} = \left(\partial A / \partial y, -\partial A / \partial x, B_{Z}(A) \right)$$

L-N Hau, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 104.A4 (1999): 6899-6917 Q Hu, BUÔ Sonnerup, Journal of Geophysical Research: Space Physics 107.A7 (2002) C Möstl et al., Sol. Phys. 256 (2009) 427-441 "Ill pause for a moment so you can let this information sink in."

Cartoon presented in Prof. Sonnerup's Van Allen Lecture at the 2010 AGU Fall Meeting

(New Yorker Magazine, available from http://www.newyorker.com/cartoons/a15439)

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Grad-Shafrano	v reconstruction				

• Reference frame velocity is estimated through the de Hoffmann-Teller analysis

$$\boldsymbol{E}' = \boldsymbol{E} + \boldsymbol{V}_{HT} + \boldsymbol{B} = 0$$

Q Hu, Science China Earth Sciences 60.8 (2017) : 1466-1494

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Grad-Shafranc	ov reconstruction	n			

• Reference frame velocity is estimated through the de Hoffmann-Teller analysis

$$\boldsymbol{E}' = \boldsymbol{E} + \boldsymbol{V}_{HT} + \boldsymbol{B} = 0$$

Stationarity, the Faraday's law

$$abla imes \mathbf{E}' = -\left(\frac{\partial \mathbf{B}}{\partial t}\right)' = \mathbf{0}$$

Q Hu, Science China Earth Sciences 60.8 (2017) : 1466-1494

GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions
0000000	0000000000	0000	000000	0000000	00000
Grad-Shafranc	v reconstruction				

• Reference frame velocity is estimated through the de Hoffmann-Teller analysis

$$\boldsymbol{E}' = \boldsymbol{E} + \boldsymbol{V}_{HT} + \boldsymbol{B} = 0$$

Stationarity, the Faraday's law

$$abla imes m{E}' = -\left(rac{\partial m{B}}{\partial t}
ight)' = 0$$

• By choosing \hat{x} along the HT velocity $-V_{HT} \cdot \hat{x}$ represent the projection of the S/C path

Q Hu, Science China Earth Sciences 60.8 (2017) : 1466-1494

x: Projected Spacecraft Path

-V,,,,,

GCR variability	LPF 0000000000	GS reconstruction 000●	Monte Carlo simulation	Results 00000000	Conclusions
Grad-Shafrano	v reconstruction				

Invariant axis estimation: first guess based on the minimum variance analysis

Q Hu, et al. Journal of Geophysical Research : Space Physics 109.A3 (2004)

GCR variability	LPF 0000000000	GS reconstruction ○○○●	Monte Carlo simulation	Results 00000000	Conclusions
Grad-Shafrano	v reconstruction				

- Invariant axis estimation: first guess based on the minimum variance analysis
- Refined method based on a trial and error procedure to minimize the fit residue between the transverse pressure P_t as a function of the potential vector A only

Q Hu, et al. Journal of Geophysical Research : Space Physics 109.A3 (2004)

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Grad-Shafrano	v reconstruction			4 2 2 2	

- Invariant axis estimation: first guess based on the minimum variance analysis
- Refined method based on a trial and error procedure to minimize the fit residue between the transverse pressure P_t as a function of the potential vector A only
- Calculation of the vector potential of the magnetic field A(x, y) at y values distant from the S/C path placed at y = 0 using a second-order Taylor expansion with the GS equation

Q Hu, et al. Journal of Geophysical Research : Space Physics 109.A3 (2004)

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Overview				. * *	

- The GS reconstruction provide a quasi-3-D magnetic map with cylindrical symmetry
- Assuming an isotropic flux outside the MC region, protons are propagated through the structure with full-trajectory integration
- After the propagation a grid is defined on the x-y plane of the GS reconstruction and the particle fluence through volume elements are computed
- The variation between the isotropic initial fluence throught the MC boundaries and the volume fluence on the grid is evaluated

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
		000000		
Incident par	ticle fluence			

Differential incident GCR fluence

$$F^{(in)}(E) = \int_0^\infty dt \ \frac{1}{\pi A} \frac{dN}{dt \ dE} = \frac{1}{\pi A} \frac{dN}{dE}$$

 If N_E particles with unit weight and energies E ∈ [E, E + ΔE] are injected into the simulation space through the surface A = 2(x_{max} - x_{min})L_z + 2(y_{max} - y_{min})L_z, where L_z is the length of the box in z direction, the total omnidirectional differential fluence at the boundaries

$$F^{(in)} = \frac{N_E}{\pi A \Delta E}$$

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions
Volume particle	e fluence				

• The particle distribution function f(x, p), defined as the number of particles in the position x with momentum p in the phase-space volume element $d^3x d^3p$, can be expressed in term of the differential flux

$$f(\boldsymbol{x}, \boldsymbol{p}) = \frac{dN}{p^2 d^3 x d\Omega dp} = \frac{v dN}{p^2 d^3 x d\Omega dE} = \frac{J(E)}{p^2}$$

• For an incident particle isotropic distribution the differential flux is

$$F(E) = \int_0^\infty dt \, J(E) = \int_0^\infty dt \, \frac{v}{4\pi} \frac{dN}{d^3 x \, dE}$$

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 0000000	Conclusions
Volume particle	e fluence				

• Discrete expression of the volume differential fluence

$$F_{C}(E) = \frac{\sum_{k=1}^{N_{C,E}} n_{C,k} v_{k} \Delta t}{4\pi \Delta x \Delta y L_{z} \Delta E}$$

• C is the cell defined as $(x, y) \in [x_i, x_i + \Delta x] \times [y_i, y_i + \Delta y]$, where i, j = 1, 2, ..., M

n_{C,k} is the number of points of the k-th particle trajectory in the cell C

• Δt is the Monte Carlo time step with the condition $\Delta t < \min(\Delta x, \Delta y)/c$

• *v_k* is the velocity of the *k*-th particle

GCR variability	LPF		Monte Carlo simulation	Results	Conclusions
0000000	0000000000	0000	00000	00000000	00000
Particle flu	ence variation				

• The differential fluence variation in the cell *C* as a fraction of the incident fluence is obtained combining previous equations

$$\Delta F_C(E) = \frac{F_C(E) - F^{(in)}(E)}{F^{(in)}(E)}$$

• the energy-averaged fluence variation is

$$\Delta F_C = \frac{F_C - F^{(in)}}{F^{(in)}}$$

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results	Conclusions
GCR variability 0000000 August 2	LPF 000000000000000000000000000000000000	GS reconstruction	Monte Carlo simulation 000000	Results ●0000000	Conclusions
August 2	2, 2016 Forbus	h decrease			

2016 Aug 0	Earbuch Dearag	~~			
0000000	0000000000	0000	000000	00000000	
				0.000000	
GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions

0000000	0000000000	0000		0000000	
0010 4.000	Farbuch Deeree				

2016 Aug 2: Forbush Decrease

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 000●0000	Conclusions
August 2, 20	16 Forbush decr	ease			

Disturbance	ICME Plasma/Field Star			
Y/M/D (UT) <u>(a)</u>	End Y/M/D (UT) (b)			
2016/08/02 1400	2016/08/02 1400	2016/08/03 0300		

Richardson and Cane (http://www.srl.caltech.edu/ ACE/ASC/DATA/level3/icmetable2.htm)

No.	Time Range
2683	2016/08/02 21:00 ~ 2016/08/03 02:55

Zheng and Hu (http://fluxrope.info/index.html)

- V_{ICME} = 420 km/s
- V_{MAX} = 460 km/s
- $\langle B \rangle = 22.89 \text{ nT}$
- Bmax = 25.48 nT

GCR variability	LPF	GS reconstruction	Monte Carlo simulation	Results	Conclusions
0000000	00000000000	0000	000000	00000000	00000
August 2, 20	16 Grad Shafrar	ov reconstruction			

📕 X GSE 📃 Y GSE 📒 Z GSE

- dHT velocity [-413.69, -27.94, 11.64] km/s
- GS orientation: latitude 17.3 \pm 1.7°, longitude 53.9 \pm 2.9°

- S/C separation: $\delta y = 0.0045 \text{ AU}$
- MC expansion: $|V_{exp}| / |V_{HT}| = 0.018 \ll 1$

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 00000●00	Conclusions
August 2, 2016	Monte Carlo sim				

Initial proton differential energy spectrum for the August 2, 2016 event:

$$J(E) = A(E+b)^{-\alpha} E^{\beta}$$

 $A = 18000, b = 1.25, \alpha = 3.66 \text{ and } \beta = 0.869$

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 000000●0	Conclusions
August 2, 2016	simulation result	S			

Fluence variation matrix

Comparison with LPF data

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results ○○○○○○○●	Conclusions
August 2, 2	016 simulation res				

Differential fluence variation for the August 2, 2016 Forbush decrease

Differential fluence variation

$$\Delta F_{id}(E) = \frac{F_i(E) - F_d(E)}{F_i(E)}$$

- F_i(E) : initial omnidirectional differential fluence
- F_d(E) : differential fluence in the cell associated with the dip of the FD along the LPF path
- Particles with energies > 10 GeV do not show significant variations (below 1%), thus the modulation due to the MC transit results to be uneffective
- This is confirmed by neutron monitor observations, that present an overall variation of a few percent over the whole FD event and no signature of the MC transit can be clearly detected

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions OOOO
Conclusions					

 Periodicities analysis is carried out using the EMD technique. Intrinsic mode functions 7-9, with mean periods of 10.3 ± 0.3, 14.1 ± 0.6 and 27.6 ± 1.0 days respectively, appear to be associated with the 27-days solar rotation period and higher harmonics. The residue of the EMD represents the data trend and is correlated with the decreasing solar activity observed during the LPF mission elapsed time.

GCR variability	LPF 00000000000	GS reconstruction	Monte Carlo simulation	Results 00000000	Conclusions OOOO
Conclusions					

- Periodicities analysis is carried out using the EMD technique. Intrinsic mode functions 7-9, with mean periods of 10.3 ± 0.3 , 14.1 ± 0.6 and 27.6 ± 1.0 days respectively, appear to be associated with the 27-days solar rotation period and higher harmonics. The residue of the EMD represents the data trend and is correlated with the decreasing solar activity observed during the LPF mission elapsed time.
- The simulated particle fluence variation at the MC passage is calculated along the LPF S/C path. The amplitude of the simulated FD is found to be 3%, fully consistent with the 2.6 ± 1% observed with LPF and the time profile returned by the simulation shows an excellent agreement with the LPF data trend within error bars.

GCR variability	LPF 0000000000	GS reconstruction	Monte Carlo simulation	Results 0000000	Conclusions 00000
Conclusions					

- Periodicities analysis is carried out using the EMD technique. Intrinsic mode functions 7-9, with mean periods of 10.3 ± 0.3 , 14.1 ± 0.6 and 27.6 ± 1.0 days respectively, appear to be associated with the 27-days solar rotation period and higher harmonics. The residue of the EMD represents the data trend and is correlated with the decreasing solar activity observed during the LPF mission elapsed time.
- The simulated particle fluence variation at the MC passage is calculated along the LPF S/C path. The amplitude of the simulated FD is found to be 3%, fully consistent with the 2.6 \pm 1% observed with LPF and the time profile returned by the simulation shows an excellent agreement with the LPF data trend within error bars.
- The diffusion of particles perpendicularly to the mean magnetic field includes two processes : 1) field line crossings due to scattering or drift and 2) random walk along field lines. The only mechanisms included in our simulation are gradient and curvature drifts. The excellent agreement between the LPF observations gathered during the MC transit and the Monte Carlo simulation outcome shows that for this case the random-walk-like diffusion gives a negligible contribution to the MC-driven GCR FD observed in space.

GCR variability	LPF	Monte Carlo simulation	Results	Conclusions
				00000

Thank you for your attention !

Questions?