FRED meeting

ERED for photon transport

Gaia Franciosini

29/11/2019

MC method for photon transport

Photoelectric absorption

Key points:

- The photon energy must exceed the atomic binding energy:
 - $k > E_B$
- The ejected electron energy is: $E'_e = k E_B$

• The emission of a **fluorescent** (characteristic) **X-ray** due to the filling of a K-orbital electron vacancy via the cascade of an L-orbital electron. The emitted photon has a definite energy given by the difference between the two electron binding energies.

Differential cross section

The electron angle is extracted according to the relativistic differential cross section:

r

C

$$\frac{\mathrm{d}\sigma_{\mathrm{ph}}}{\mathrm{d}\Omega_{\mathrm{e}}} = \alpha^{4} r_{\mathrm{e}}^{2} \left(\frac{Z}{\kappa}\right)^{5} \frac{\beta^{3}}{\gamma} \frac{\sin^{2} \theta_{\mathrm{e}}}{(1 - \beta \cos \theta_{\mathrm{e}})^{4}} \left[1 + \frac{1}{2}\gamma(\gamma - 1)(\gamma - 2)(1 - \beta \cos \theta_{\mathrm{e}})\right]$$
For photon energies k << mec², the relativistic effects can be ignored and the differential cross section is reduced to the first term.
Differential cross section distribution for different $\boldsymbol{\beta}$ values:

$$\frac{d\sigma}{d\Omega} \simeq \frac{\sin^{2} \theta}{(1 - \beta \cos \theta)^{4}} [1 - \frac{1}{2}\gamma(\gamma - 1)(\gamma - 2)(1 - \beta \cos \theta)]$$

$$\beta_{1} > \beta_{2} > \beta_{3} > \beta_{4} > \beta_{5} > \beta_{6}$$

 ϑ [rad]

Electron angle extraction

k = 0.003 MeV β = 0.10 k = 0.010 MeV β = 0.20 0^L 0.5 2.5 1.5 0.5 1.5 2.5 ϑ [rad] ϑ [rad]

If $\beta < 0.25$ (k << m_ec²) the differential cross section is maximized by g(ϑ):

$$\frac{d\sigma}{d\Omega} \simeq \frac{\sin^2(\theta)}{(1 - \beta_e \cos(\theta))^4} \longrightarrow g(\theta) = \frac{\sin(\theta + \beta_e)}{(1 - \beta_e)}$$

The electron angles are extracted using the HIT or MISS method.

Electron angle extraction

(sampling from fit)

$$f(x;a,b) = a(ax)^{b-1}e^{-ax}/\Gamma(b)$$

The electron angles are extracted according to

$$\longrightarrow x = -\ln(\xi_1 \cdot \xi_2 \cdot \ldots \cdot \xi_b)/a$$

Compton scatter

Klein-Nishina differential cross section

$$\frac{\mathrm{d}\sigma_{\mathrm{Co}}^{\mathrm{KN}}}{\mathrm{d}\Omega} = \frac{r_{\mathrm{e}}^2}{2} \left(\frac{E_{\mathrm{C}}}{E}\right)^2 \left(\frac{E_{\mathrm{C}}}{E} + \frac{E}{E_{\mathrm{C}}} - \sin^2\theta\right)$$

Many Monte Carlo photon transport codes draw samples of the scattering cosine for Compton scatter from the KN differential cross section. For example FLUKA uses:

- -Koblinger method above k = 1.4 MeV;
- -Kahn algorithm below k= 1.4 MeV.

During these days I will try different methods to obtain the algorithm that maximizes the coding efficiency and the parsimony.

ϑ extraction: first method

PRELIMINARY

Sampling by rejection:

