

Fred 3.0 status report

A. Schiavi

SBAI - URLS - 29/11/2019

Fast paRticle thErapy Dose evaluator

Collaboration network

A. Schiavi, V. Patera, A. Sarti, M. De Simoni, M. Fischetti, M. Pacitti, G. Acciaro, G.Traini, G. Battistoni, Univ. La Sapienza Roma and INFN (Italy)

- N. Krah CREATIS, CNRS/University Lyon (France)
- Lyon ?

 A. Rucinski, J. Gajewski, M. Garbacz, A. Skrzypek, J. Baran -PAN, Krakow (Poland)

• I. Rinaldi - Maastro clinic, Maastricht (Netherlands)

FRED fast-MC platform

- particle tracking with class II MC algo in voxelized geometry
- Tabulated total stopping power in standard materials (PSTAR-NIST), energy straggling (Gaussian and Landau-Vavilov regimes)
- MCS models: single-,double-,triple-gaussian, gauss+Rutherford
- Nuclear interactions: elastic and inelastic; fragmentation; local deposition of heavy ions; tracking of secondary particles (e.g. protons and deuterons)
- HU to density conversion (Schneider) and stoppow calibration
- MC-TPS: dose optimization using DDO (Lomax)
- RBE models = fixed 1.1, LETd-based (Wedenberg, Carabe, Wilkens, Chen, McNamara), table-based (LEM1, MKMPIDE)

Field size factor

- ddd within 1.5% of full-MC codes
- lateral tails matched at 4 orders of magnitude
- nuclear tails within 1.5% of data at 20 cm away from axis in the F.S.F.

A. Schiavi et al, PMB 62 (2017) 7482–7504

fast-MC recalculation

In-room imaging for patient positioning (CBCT)

• patient positioning

- geometry match
- delivery uncertainties

we need also **dosimetric** verification of TP on the day of treatment

Tracking performance

Benchmark = dose calculation for 150 MeV protons in liquid water phantom with 2 mm voxel resolution.

	Hardware	primary/s	Patient plan recalculation*
FLUKA/GEANT4	single CPU core	750	16 days
FRED	single CPU core	15000	19 hours
FRED	single GPU card	10 mln	2,3 min
FRED	cluster of 144 GPU cards	300 mln	3 s
<pre>* Patient case: 3-fields Head-Neck plan at 1% of total protons = 700 mln primaries</pre>			

Examples of applications in ongoing collaborations

- verification plan and patient plan recalculation (CNAO - Pavia)
- commissioning and RBE models (CCB -Krakow)
- Complex delivery sequence (Maastro)
- Half-Head experiment at CCB
- Carbon fragmentation
- Electromagnetic Fred (plugin development)

Adaptive Aperture Maastro movements from log files

THE HENRYK NIEWODNICZAŃSKI INSTITUTE OF NUCLEAR PHYSICS POLISH ACADEMY OF SCIENCES

Validation in heterogeneous media

- Heterogeneous head phantom
- MatriXX measurement in water
- Single energy: 100, 150 and 200 MeV
- Range shifter

Tumor Treatment with Light Ion Beams

The simulation of light ion nuclear fragmentation, presently not included in the code, gives a significant contribution to the dose deposited inside the patient in the distal region.

Ganil Experiment

Development of the model using data taken during experiments to study the fragmentation of ¹²C beams on thin targets at GANIL (laboratory of CAEN, France, 2011-2017).

Data consist on: **energy and angular cross-section** distributions on H, C, O, Al, and Ti with beams of ${}^{12}C$ with energies of 50 and 95 MeV/n with a detection angle [- 43° ,+ 43°]

Plugin interface for development

COMING SOON!