On sliding, hiccupping and the multiverse

DANIELE TERESI

daniele.teresi@df.unipi.it

A. Strumia and D. Teresi, *Cosmological constant: relaxation vs multiverse*, Phys.Lett. B797 (2019) 134901. arXiv:1904.07876 [gr-qc]

P. Ghorbani, A. Strumia and D. Teresi, *A landscape for the cosmological constant and the Higgs mass,* JHEP ???. arXiv:1911.01441 [hep-th].

UNIVERSITÀ DI ROMA TRE, 10/12/19

... not a drunk talk

Post-naturalness

- Standard Model and ΛCDM very (too much) successful
- usual list of unexplained facts: dark matter, baryon asymmetry, isotropy...
- ... plus the old naturalness problems:
 - why is the Universe big? (i.e. gravity is way way way way weaker than quantum mechanics would suggest)
 - why does the Universe have a non-boring history? (i.e. the cosmological constant is way way way smaller than quantum mechanics would suggest)
- now getting unfashionable, but not having found the solution doesn't mean that a problem has disappeared
- classical approaches to naturalness based on symmetries: quantum corrections cancelled because of symmetry. However, symmetric partners of known particles have not been found (yet?)
- post-naturalness: the problem is still there, but qualitatively new paradigms, e.g.
 - unnatural values special points of cosmological dynamics (first part of the talk)
 - environmental solutions: huge number of vacua, including unnatural ones (2nd part)

Part I

The Hiccupping Universe

Why putting a flat scalar field in the sky?

- classical approaches to naturalness based on symmetries
- more recently: approaches based on dynamics in the Early Universe (paradigmatic example for the Higgs mass: relaxion [Graham, Kaplan, Rajendran, '15])
- ingredients:
 - some dynamics in the early Universe
 - different values of parameters (Higgs mass, CC, ...) are scanned
 - unnatural values special points of dynamics
 - there a back-reaction is triggered, that stops dynamics
- also for the CC!

[Abbott '85; Alberte, Creminelli, Khmelnitsky, Pirtskhalava, Trincherini '16; Graham, Kaplan, Rajendran, '19]

typically involve a scalar field with a bottom-less quasi-flat potential

Rolling

Cosmology with a bottom-less scalar

• scalar field with $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - V(\phi)$ with $V(\phi) \simeq -g^3 \phi$ g tiny

• for large $-\phi \gg M_P \longrightarrow$ inflation with

$$H^2 = \frac{8\pi}{3M_P^2} \left(\frac{\dot{\phi}^2}{2} + V(\phi)\right)$$

- classical slow roll up to $-\phi \sim M_P$
- then $V(\phi)$ quickly becomes negative and compensates $\dot{\phi}^2$: expansion \rightarrow contraction
- slow-roll ends at $\phi \sim -M_P$, turning point at $\phi \sim M_P$

Relaxation of the cosmological constant [Graham, Kaplan, Rajendran, '19]

- cosmological constant has relaxed from $V_{\rm in} \sim g^3 \phi_{in}$ to $V_{\rm end} \sim -g^3 M_P$, with $|V_{\rm end}| \ll V_{\rm in}$
- Universe is now collapsing, but small CC has become a special point of dynamics
- anti-de Sitter vacua "terminal"?
- resolution of singularity not known \rightarrow it makes sense to assume the possibility of a **rebounce** mechanism (e.g. [Graham, Kaplan, Rajendran, '17])
- assumption: during the rebounce V is changed by small V_{rebounce}
- if $|V_{\text{end}}| \lesssim V_{\text{rebounce}} \approx \text{CC: } O(1)$ probability to have observed Universe
- GKR want to avoid eternal inflation \leftrightarrow spatial multiverse $\phi_{in} > \phi_{class} \Longrightarrow V_{in} \lesssim g^2 M_P^2 \approx MeV$

Bouncing

... but the story goes on ... [Strumia, Teresi, '19]

- we found that the recollapse happens unavoidably (unless the assumptions fail)
- again, at $V \simeq V_{end} = -g^3 M_P$ recollapse, re-heating, bounce, expansion, ...
- if $V_{\text{rebounce}} > V_{\text{class}}$:
 - quantum evolution now dominates \rightarrow eternal inflation
 - tunnelling/quantum fluctuations bring locally a patch to $V < V_{class}$
 - this patch relaxes, collapses, bounces and back to V_{rebounce} > V_{class}
 - qualitatively similar to standard spatial multiverse (and to [Garriga, Vilenkin, '12])
- if $V_{\text{rebounce}} < V_{\text{class}}$ (the Universe "hiccups"):
 - the whole Universe (or the starting patch) follows classical evolution
 - it undergoes, as a whole, cycles of finite life-time
 - formally an infinite number of cycles, each with different $V \sim V_{\text{rebounce}} \leftrightarrow \text{CC}$
 - a "hiccupping" temporal multiverse is generated!

The hiccupping multiverse

- Universes with finite (not exponentially long!) life-time regardless of sign of CC
- no "monsters" inside the hiccupping multiverse:
 - exponentially long de Sitter (like in ΛCDM) would make Boltzmann brains more probable than us → killed by the finite lifetime
 - similarly for the youngness paradox (although avoided by some meaasures already in the spatial multiverse)
- more "probable" to get observed small CC through this dynamics, rather than directly from spatial multiverse

The hiccupping multiverse

- Universes with finite (not exponentially long!) life-time regardless of sign of CC
- no "monsters" inside the hiccupping multiverse:
 - exponentially long de Sitter (like in ΛCDM) would make Boltzmann brains more probable than us → killed by the finite lifetime
 - similarly for the youngness paradox (although avoided by some meaasures already in the spatial multiverse)
- more "probable" to get observed small CC through this dynamics, rather than directly from spatial multiverse

Hiccupping

Hiccupping

- hiccupping $\longleftrightarrow V$ doesn't change much at each bounce
- disordered landscape (like from string theory) could exist or not; the bounce shouldn't trigger it (e.g. $T_{\text{bounce}} \ll M_P$)
- the mechanism needs an ordered landscape: minima close-by in field space have similar energy [Abbott '85; Graham, Kaplan, Rajendran '15; Arvanitaki, Dimopoulos, Gorbenko, Huang, Van Tilburg, '16: Cline, Espinosa '18: Geller, Hochberg, Kuflik '18: Cheung, Saraswat '18: Hook, '19]
- example: Abbott's model $V_{\phi'} = -g^3_{\phi'} \phi' \Lambda^4 \cos rac{\phi'}{f_{\phi'}}$
 - $(\phi' \text{ could be } \phi)$

- at each contraction/bounce/expansion a phase where fluctuations dominate and ϕ' diffuses (upwards and downwards)
- at each cycle V changes a little, the Universe "hiccups"

Hiccupping

Hiccupping

- hiccupping $\leftrightarrow V$ doesn't change much at each bounce
- disordered landscape (like from string theory) could exist or not; the bounce shouldn't trigger it (e.g. $T_{\text{bounce}} \ll M_P$)
- the mechanism needs an ordered landscape: minima close-by in field space have similar energy [Abbott '85; Graham, Kaplan, Rajendran '15; Arvanitaki, Dimopoulos, Gorbenko, Huang, Van Tilburg, '16: Cline, Espinosa '18: Geller, Hochberg, Kuflik '18: Cheung, Saraswat '18: Hook, '19]

• example: Abbott's model
$$V_{\phi'} = -g^3_{\phi'}\phi' - \Lambda^4 \cos \frac{\phi'}{f_{\phi'}}$$
 (ϕ' could be ϕ)
V(ϕ')
the Universe "hiccups"

Hiccupping

Hiccupping

- hiccupping $\longleftrightarrow V$ doesn't change much at each bounce
- disordered landscape (like from string theory) could exist or not; the bounce shouldn't trigger it (e.g. $T_{\text{bounce}} \ll M_P$)
- the mechanism needs an ordered landscape: minima close-by in field space have similar energy [Abbott '85; Graham, Kaplan, Rajendran '15; Arvanitaki, Dimopoulos, Gorbenko, Huang, Van Tilburg, '16: Cline, Espinosa '18: Geller, Hochberg, Kuflik '18: Cheung, Saraswat '18: Hook, '19]
- example: Abbott's model $V_{\phi'} = -g^3_{\phi'} \phi' \Lambda^4 \cos rac{\phi'}{f_{\phi'}}$
 - $(\phi' \text{ could be } \phi)$

- at each contraction/bounce/expansion a phase where fluctuations dominate and ϕ' diffuses (upwards and downwards)
- at each cycle V changes a little, the Universe "hiccups"

"""""Probabilities"""""

- disclaimer: "probabilities" for 1 observer (us), affected by infinities...
- probability for a given CC V as measured by an observer:

 $\mathcal{P}_{obs}(V) = \mathcal{P}(V) \mathcal{P}_{ant}(V)$ (Bayes' theorem)

- anthropic \mathcal{P}_{ant} affected by infinities (measure probl.): $\mathcal{P}_{ant}(V) \propto \int dt \mathcal{V}_{reg} \frac{d^2n}{dtd\mathcal{V}}(V)$
- anthropic factor $\mathcal{P}_{ant}(V)$ favours $V \approx 100 \,\text{CC}$ (\implies anthropics not enough?) [Weinberg '87, '00; Garriga, Vilenkin '99]
- a-priori distribution $\mathcal{P}(V)$ given by hiccupping dynamics
- dynamics gives $V \simeq 0$ as special point, $\mathcal{P}(V)$ can peak there

Part II

QFT Landscape

Environmental solutions to naturalness

- the scalar potential has a huge ($\gtrsim 10^{160}$) number of minima
- they form a **landscape**, i.e. the cosmological constant *V* and the Higgs vev *v* scan on super-horizon bubbles
- typical scale of the potential $M \approx M_{\text{Pl}}$ but the scan includes $V \approx \text{meV} \simeq 0$ and $v \approx \text{TeV} \simeq 0$ for "statistical" and structural reasons \implies successful landscape
- a selector mechanism "chooses" the unnatural Universe
 - anthropics: galaxies form only if $V \lesssim \mathcal{O}(100)V_{obs}$ [Weinberg '89, ...], elements spread [D'Amico, Strumia, Urbano, '19] only if $v \sim \text{TeV}$.

"Anthropics is a serious thing" (A. Strumia)

- hiccupping dynamics [Strumia, Teresi, '19]
- other dynamics [... Giudice, Kehagias, Riotto, '19]
- string-theory compactifications can give $\mathcal{O}(100)$ fluxes $\Longrightarrow \gtrsim 10^{160}$ different minima. A successful landscape? Difficult to calculate...
- QFT with $\mathcal{O}(100)$ scalars can give $\gtrsim 10^{160}$ different minima. Calculate?

QFT landscape

- assume QFT is valid (e.g. SUSY at Planck scale limits sensitivity to UV)
- $\bullet\,$ finding if a generic potential has many minima \longrightarrow no general solution
- calculable possibility \longrightarrow non-interacting scalars: [Arkani-Hamed, Dimopoulos, Kachru '05]

$$V = \sum_{i=1}^{N} V_i(\phi_i) \quad \text{with} \quad V_i = V_i^0 - \frac{\mu_i^2}{2}\phi_i^2 - \frac{A_i}{3}\phi_i^3 + \frac{\lambda_i}{4}\phi_i^4$$

- all dimensionful quantities at the high scale M
- structure technically natural
- QFT \implies each scalar has two minima $V_{\rm av}^i \pm V_{\rm diff}^i$
- summing N ≫ 1 scalars: 2^N vacua, scanning the cosmological constant V (successfully? back on this later)
- no landscape for masses: to scan the Higgs mass *H* should be introduced as a special field with large interactions with many φ_i (rather ad hoc...)

A fragile landscape

- large generic interactions destroy the landscape: each stationary point has probability *P* ∼ 1/2^N to be a minimum → most are saddle points
- actually worse than this: Random Matrix Theory \implies eigenvalues repel, $\mathcal{P} \sim e^{-N^2/4}$ [Aazami, Easther, '05]
- landscape destroyed for $\lambda_{cross} \sim 1/(N\sqrt{\log N})$
- mass scanning: $\delta m^2 \sim \sqrt{N} \lambda_{\rm cross} v^2 \sim v^2 / \sqrt{N \log N}$
- light field with probability $\mathcal{P} \sim 2^N e^{-\frac{1}{2} \left(\frac{\mu^2}{\delta m^2} \right)^2} \sim 2^N e^{-N \log N} \to 0$
- is it possible to have a landscape with large cross-interactions?
 (⇒ masses are scanned, including the Higgs one)

Bi-quadratic landscape

- we find that an approximately **bi-quadratic landscape** works [Ghorbani, Strumia, Teresi, '19]
- rather than from non-interacting scalars, start from unperturbed \mathbb{Z}_2^N -symmetric:

$$V = V_0 - rac{1}{2}\sum_{i=1}^N \mu_i^2 \phi_i^2 + rac{1}{4}\sum_{i,j=1}^N \lambda_{ij} \phi_i^2 \phi_j^2$$

- calculable: minima by linear equation $\lambda_{ij}v_j^2 = \mu_i^2$
- mass matrix $\frac{\partial^2 V}{\partial \phi_i \partial \phi_j} = 2\lambda_{ij} v_i v_j$
- λ_{ij} is positive semi-definite (stability) ⇒ all masses are positive ⇒ all stationary points are minima!
- cross-couplings can be large $\lambda_{ij} = R^T \cdot \text{diag}(\lambda_i) \cdot R$, R with large angles $\sim \theta$

Perturbations

- all minima have the same height and same mass matrix
- to obtain a landscape, add perturbations, e.g.
 - cubics $-\frac{1}{3}A\phi^3$ with $A = 2\mu\sqrt{\lambda}\epsilon$
 - linear $-B\phi$ with $B = 2\mu^3\epsilon/\sqrt{\lambda}$
 - general quartics $\propto \epsilon$
- by increasing $\epsilon \lesssim \theta$, at some point some masses become negative
 - \implies light scalar at boundary
 - \Longrightarrow Higgs

Scanning

- scalar masses are scanned $\delta m^2 \approx \sqrt{N} \mu^2 \theta \epsilon$
- δm^2 grows with $N \Longrightarrow$ many light scalars in the landscape
- for the cosmological constant same as in [Arkani-Hamed, Dimopoulos, Kachru '05]: it depends on unknown overall scale of potential
- take for instance $V \sim NV_{\rm av} \sim N \frac{\mu^4}{\lambda}$
- scanning of cosmological constant $\delta V \sim \sqrt{N} V_{\text{diff}} \sim \sqrt{N} \frac{\mu^4 \epsilon}{\lambda}$
- probability of small cosmological constant: $\mathcal{P} \sim 2^N e^{-\frac{1}{2} \left(\frac{V}{\delta V}\right)^2} \sim 2^N e^{-\mathcal{O}(1)N}$
- however, choice of $\mathcal{O}(1)$ factors essentially arbitrary

 \implies success is possible, but not guaranteed

A successful landscape

Figure 2: We consider N = 100 scalars with the bi-quadratic potential of eq. (7) for quartics λ_{ij} as in eq. (10), with comparable diagonal eigenvalues $\lambda_i \approx 1$ extracted from a Gaussian, mixing angles $\theta \sim 0.1$, vacuum expectation values $v_i = v$. We add cubic terms $V_{\text{odd}} = \mathcal{O}(0.1)v\phi_i^3$. We compute 10^5 random local minima and show their distribution of the vacuum energy (left plot) and of the lightest scalar squared mass (right panel).

Dangers

Vacuum decay

- are the "good" vacua sufficiently stable?
- [Arkani-Hamed, Dimopoulos, Kachru '05] estimate $S_{
 m bounce} \sim 27\pi^2/\lambda \Longrightarrow \lambda \lesssim 0.5$ in tension with sufficient scanning of CC
- for \approx independent fields we find:

- vacuum decay by single-field bounce $\implies \sim N$ bounces, not 2^N
- sufficient scanning of CC \longrightarrow Ratio $\gtrsim 2$
- compatible with stability

Vacuum decay with a light scalar

- $\bullet\,$ does the presence of a light scalar (—> Higgs) make vacuum decay fast?
- by studying 2-field toy examples we find that:
 - yes for vacua that start from $\phi \approx \mu$ in \mathbb{Z}_2 limit (not the Higgs): perturbations that reduce m^2 also reduce the barrier
 - not for vacua that start in symmetric phase h = 0 if large cubics are not present (like the Higgs, because of gauge): a barrier $\lambda |H|^4$ protects the minimum

Non-Gaussian landscape?

- are distributions necessarily so featureless as Gaussians?
- consider a quantity *R* such that $R = \sum_{i=1}^{N} s_n r_n$ with $s_n = \pm 1$
- if all r_n at the same scale $f(R) \rightarrow$ Gaussian
- if hierarchies in $r_n \Longrightarrow$ central-limit theorem not valid or with slow convergence
- toy example: $r_n = \epsilon^n$, with $0 < \epsilon \le 1$

• hope for some predictivity?

Conclusions

- no new physics at LHC, Planck, ...
- naturalness issues have gotten worse, not better

```
Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the difference.
(R. Frost)
```

- the beaten road: find a symmetry that cancels contributions that create un-naturalness, predict symmetry-partners of SM, not (yet?) find them
- the less beaten road: Standard Model is un-natural, but un-naturalness because of some dynamical mechanism
 - dynamics in the early Universe?
 - observer bias?
 - a combination of both?
 - ...
- the un-beatable road (in my opinion): deny the problem

Well, now I realise that my chance is today. As a scientist, I have the privilege to live in a new era of krisis. Ideas thrive in the periods of krisis dominated by uncertainty and confusion [...] A new paradigm change

seems to be necessary. (G.F. Giudice, The Dawn of the Post-Naturalness Era, 2017)

