

Keynote: EM aspects in Geant4

V. Ivantchenko CERN & Princeton University

IV Geant4 International User Conference at the physicsmedicine-biology frontier, 24–26 Oct 2022, Napoli, Italy

10/25/2022

Outline

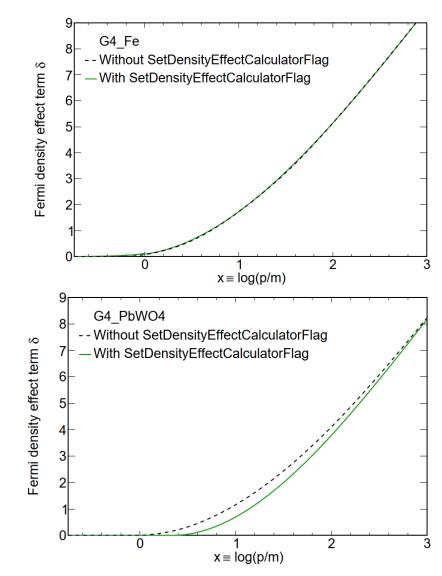
Introduction

- Geant4 kernel libraries for EM physics
- Selected EM physics developments
 - Gamma processes
 - Fluctuation of energy loss
 - Ion transport
 - Combined processes
- EM Physics Lists
- Summary
- Release schedule and goals strongly coupled with LHC program
- Phase-2 LHC (2029) required more performant Monte Carlo
- Significant efforts of the Geant4 to redesign the toolkit making it faster
 - For HEP applications 1 % of CPU means a lot
- Production using super-computer facilities with GPU

Introduction

- Geant4 History
 - Early discussions at CHEP 1994 @ San Francisco CERN & Japan seeded R&D proposal
 - Dec '94 R&D project start
 - Dec '98 -First Geant4 public release -version 0.0
 -
 - 2004: ATLAS, CMS, and LHCb start using Geant4 in production
 - Dec 2013 version 10.0 1st with multi-threading
 - Dec 2020 version 10.7 completed 10 series
 - Dec 2021 Geant4 11.0 start of the new series
 - Dec 2022 Geant4 11.1 focus of this talk
- Main publications
 - Nucl. Instr. Meth. A 506, 250-303 (2003).
 - IEEE Trans. Nucl. Sci. **53**, 270-278 (2006).
 - Nucl. Instr. Meth. A 835, 186-225 (2016).
 - Med. Phys., 48, 19-56 (2021)

- Object oriented design and C++ allow to have a flexible code organisation
 - New components may be added without affecting other part of exiting code
 - User may be a developer
- Geant4 developments are strongly supported by HEP community
 - Support of the LHC experiments for the Geant4 Collaboration is the top priority
 - Large shutdown of LHC 2019 2021
 - The new Run3 is started in 2022
- Limitations from COVID affect Geant4 10.7
 - Recommended version 10.7.4
- For Geant4 11.0 a lot of modifications were introduced
 - Removed many obsolete files related to physics
 - Moved files and directories
 - Geant4 11.0.3 recommended version



Geant4 kernel libraries for EM physics

Materials category updates

- Matthew Strait proposed several improvements for the density effect computations
 - Initial on-fly computation of the density effect in 10.7 has some problems
 - The algorithm for G4DensityEffectCalculator was improved for 11.0
 - G4DensityEffectData:
 - For 11.1 several typos are fixed in the density effect data table for 8 materials, the most significant fix for G4_Tm, small for G4_Be, G4_Mg, G4_Fe, and G4_Y.
- Mean ionization potential for carbon is changed from 81 to 78 eV
 - Choice what NIST data to take
- New methods to build compound materials
 - void AddElementByNumberOfAtoms(...)
 - void AddElementByMassFraction(...)
 - void AddMaterial(....)
- G4MaterialPropertyVector, G4OpticalMaterialProperties:
 - Insist material property vectors are in increasing order of energy
 - Default verbosity=1 as everywhere in Geant4 physics
 - Use indexes instead of string in run time

Updates of base libraries for Geant4 11.0

• Use C++11 keyword uniformly over EM sub-libraries

- "virtual" keyword in base classes methods
- "override" or "final" in derived class methods
- where possible use advance loop pattern
- moved initialisation of pointers, Boolean, and simple numbers to headers
- use "const" variables where possible
- removed unused variables and headers
- check interfaces improve where needed and possible
- code is C++20 compatible
- Removal of obsolete classes and interfaces
 - the most important is removal of G4EmProcessOptions
- G4PhysicsVector constructor is changed, three type of constructors:
 - G4PhysicsLinearVector
 - G4PhysicsLogVector
 - G4PhysicsFreeVector
 - Spline flag should be enabled in constructor
 - Several spline types allowing extensions

Updates of EM libraries for Geant4 11.1

- G4VEmProcess, G4VEnergyLossProcess, G4VMultipleScattering:
 - Moved general part of initialization to G4EmTableUtil and G4EmUtility
 - 27-30% class length reduction easier to navigate inside classes
- EM processes and models was reviewed and updated
 - Spline and integral options belong now to each process and not centrally defined via G4EmParameters
 - Integral approach was reviewed and updated
 - Taking into account cross section change at a step of charged particles
 - G4CrossSectionType is introduced instead of Boolean flag
 - fEmNoIntegral
 - fEmIncreasing
 - fEmDecreasing
 - fEmOnePeak
 - fEmTwoPeacks
 - Implemented integral method for cross sections without precomputed tables
 - Subcut delta-electron production option is removed
 - G4VSubcutProcessor (user hook) interface is available
 - CorrectionAlongStep(..) method is optimized in all ion ionization models

• Number of bins in physics vectors are not anymore part of G4EmParameters but are computed via number of bins per decade

Geant4 model catalog

• Since 2008 we have process subtype

- G4VProcess::GetSubType()
- Stable ID for each process

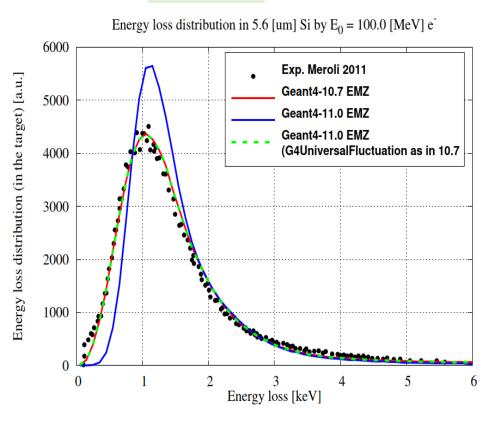
• Separate enumerators for EM, DNA, and hadronics models without overlaps

- G4EmProcessSubType.hh ID = 1-25
- G4OpProcessSubType.hh ID = 31-36
- G4DNAModelSubType.hh ID = 0-5
- There are methods in G4Track:
 - SetCreatorModelID(const G4int)
 - GetCreatorModelID() const
 - GetCreatorModelIndex() const
 - GetCreatorModelName() const

• There is G4PhysicsModelCatalog utility class

EM models IDs and names

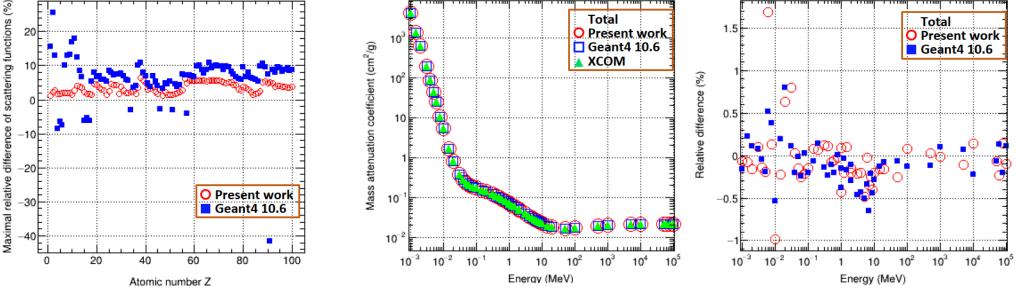
- 10000 EMunknown // any EM model
- 10010 DeltaElectron // ionisation
- 10011 DeltaEBelowCut // sub-cutoff production
- 10012 TripletElectron //
- 10013 AugerElectron // from any process
- 10020 Bremmstrahlung
- 10021 SplittedBrem
- 10022 TripletGamma // from any process
- 10023 Fluorescence // from any process
- 11000 DNAModel // any DNA model
- 11001 Ritchie1994eSolvation
- 5 more DMA models



Selected EM physics developments for Geant4 11.1

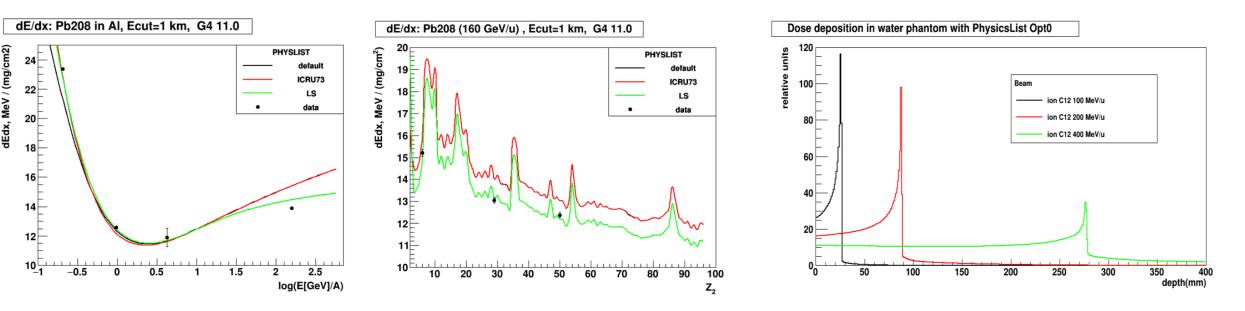
Updates in standard EM processes/models electromagnetic/standard

- Review was done of all processes and helper classes
 - Linear interpolation of tables are used for smooth cross sections
- Introduced choice of model of fluctuations
 - G4UniversalFluctuation default fast
 - G4UrbanFluctuation most accurate model
 - G4IonFluctuations
 - G4LossFluctuationDummy
 - An extension of the model list is possible
- G4UrbanMscModel technical improvements
 - Main model for HEP
 - Extended precomputed data structure
 - Reduced number of instructions
- G4GoudsmitSandersonMscModel is stable


Implementation of the EPICS2017 database for photons in Geant4

Gamma attenuation

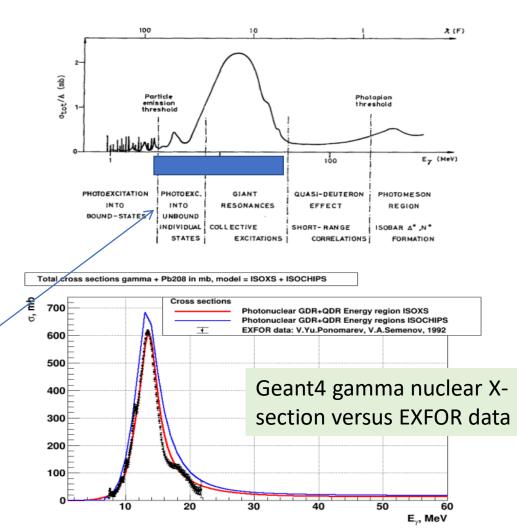
Zhuxin Li et al., Physica Medica 95, 94-115 (2022)


Compton scattering

- EPICS-2017 data for cross sections and form factors are parameterized or used as a data table
 - In average accuracy of the new parameterisation total χ^2 is better for about 30%
- Validation performed versus XCOM and SCOFIELD
 - D.E. Cullen, A survey of photon cross section data for use in EPICS2017. IAEA-NDS-225, rev 1, 2018
- For Geant4 11.1 is the default for the Livermore models

Lindhard-Sorensen ion ionization model

- G4LindhardSorensenIonModel is a combined models for the full energy range
 - Data are shared between threads, optimization of data access
 - ICRU73 and ICRU90 data at low energy below 2 MeV/amu
 - Initialisation before the run and lazy initialization during the run
 - Lindhard-Sorensen model above (J. Lindhard & A.H. Sorensen, Phys. Rev. A 53 (1996) 2443-2455)

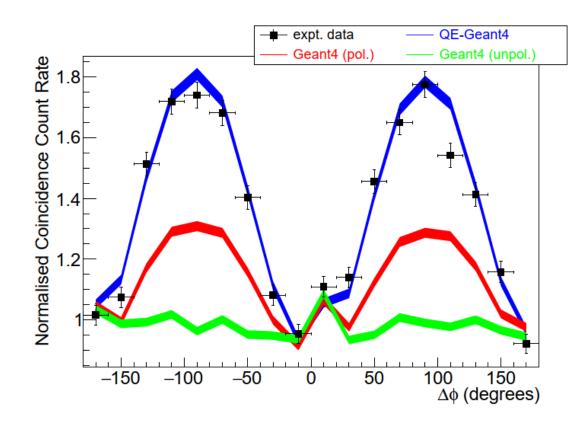

Gamma-nuclear cross section

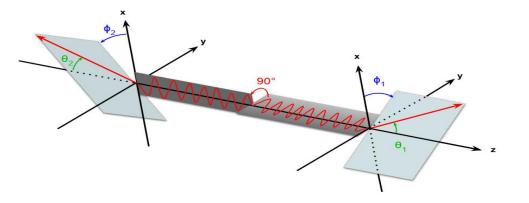
https://cds.cern.ch/record/2778865/files/Kutsenko_report.pdf

Saft

Several uniferent mechanisms are responsible for gamma-nuclear cross section

- For a long time in Geant4 CHIPS parameterization was used for full energy range above 10 MeV (NIM A 835, 186-225 (2016))
- Recently a new evaluation of the data was published (T. Kawano et al, IAEA photo nuclear data library2019.Nuclear Data Sheets,163,109-162 (2020))
 - A new data set has been included into Geant4 11.0 per natural isotope
 - Low energy limit defined by data (was 10 MeV before)
 - Data tables from threshold to 130 MeV
 - CHIP interpolation above 150 MeV
 - Linear interpolation in the transition energy range





Quantum entanglement in positron annihilation

D.P. Watts et al. Nature Commun. 12 (2021) 1, 2646; arXiv: 2012.04939v1

- There is angular correlation for Compton scattering of two photons in PET device
- The developed method may be potentially used in HEP (Higgs->2 decay) and other applications

New approaches for EM physics

- How to speed-up simulation without compromise of physics?
- G4GammaGeneralProcess
 - Adopted both by ATLAS and CMS
 - Is the Geant4 default for 11.1
 - Use spline interpolation of x-section tables below 150 keV and above 100 MeV
- G4TransportationWithMSC (J. Hahnfeld)
 - New combined process
 - User may enable this process via UI command and/or C++ interface
 - Cannot work with G4CoupleTransportation
- Custom tracking manager (J. Hahnfeld, M. Novak)
 - Simplified gamma, e+- transport
- G4HepEm external library (M.Novak)
 - Optimized gamma, e+- transport
 - <u>https://github.com/mnovak42/g4hepem</u>
 - <u>https://g4hepem.readthedocs.io/en/latest/</u>

The Problem

Step#	[]	KineE	dEStep	StepLeng	TrakLeng	Volume	Process
0	[]	10 MeV	0 eV	0 fm	O fm	World	initStep
1	[]	10 MeV	1.214e-15 meV	4 cm	4 cm	World	Transportation
2	[]	9.469 MeV	530.7 keV	442.5 um	4.044 cm	G4_Pb	msc
3	[]	8.78 MeV	689.5 keV	549.8 um	4.099 cm	G4_Pb	msc
4	[]	8.167 MeV	612.5 keV	576.7 um	4.157 cm	G4_Pb	msc
5	[]	7.287 MeV	678.7 keV	535.8 um	4.21 cm	G4_Pb	eBrem
6	[]	3.789 MeV	4.844 keV	5.203 um	4.211 cm	G4_Pb	eBrem
(7	[]	3.089 MeV	699.9 keV	560.4 um	4.267 cm	G4_Pb	msc
8	[]	2.912 MeV	177.5 keV	160.5 um	4.283 cm	G4_Pb	eBrem
9	[]	2.412 MeV	500 keV	490.5 um	4.332 cm	G4_Pb	msc
10	[]	1.938 MeV	473.7 keV	503 um	4.382 cm	G4_Pb	msc
11	[]	1.304 MeV	633.7 keV	502.7 um	4.433 cm	G4_Pb	msc
12	[]	796.1 keV	508.2 keV	437.5 um	4.476 cm	G4_Pb	msc
13	[]	173.7 keV	622.4 keV	462.1 um	4.523 cm	G4_Pb	msc
14	[]	0 eV	173.7 keV	65.48 um	4.529 cm	G4_Pb	eIoni

The Solved Problem (with Internal MSC Stepping)

*****	******	******	*****	******	******	*******	*****
		ormation:	Particle = e-,				*****
*****	*****	*****	*****	*****	******	******	*******
Step#	[]	KineE	dEStep	StepLeng	TrakLeng	Volume	Process
0	[]	10 MeV	0 eV	0 fm	0 fm	World	initStep
1	[]	10 MeV	1.214e-15 meV	4 cm	4 cm	World	TransportationWithMso
2	[]	7.461 MeV	2.406 MeV	2.105 mm	4.21 cm	G4_Pb	eBrem
3	[]	6.518 MeV	723.9 keV	597.6 um	4.27 cm	G4_Pb	eBrem
4	[]	3.433 MeV	1.807 MeV	1.304 mm	4.401 cm	G4_Pb	eBrem
5	[]	1.911 MeV	1.412 MeV	1.434 mm	4.544 cm	G4_Pb	eBrem
6	[]	566.5 keV	1.345 MeV	1.372 mm	4.681 cm	G4_Pb	eIoni
7	[]	102.8 keV	463.7 keV	245.9 um	4.706 cm	G4_Pb	eBrem
8	[]	0 eV	102.8 keV	28.64 um	4.709 cm	G4_Pb	eIoni

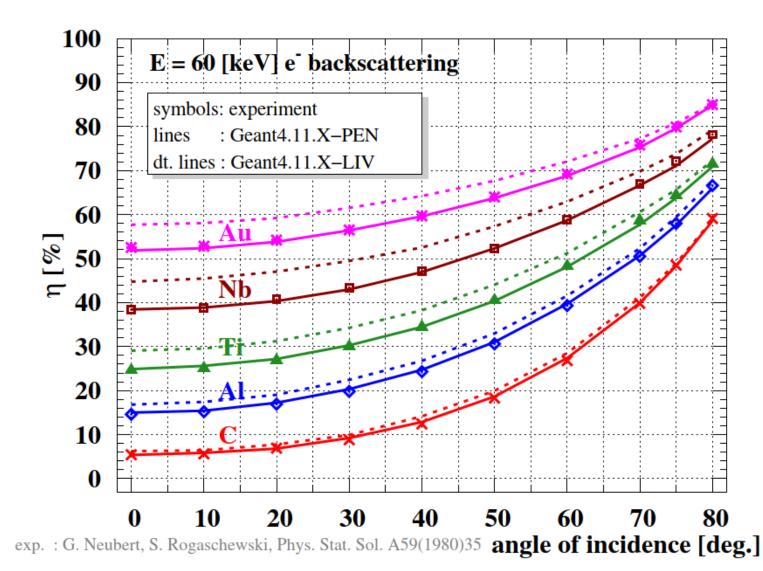
▶ No steps limited by msc, directly go to discrete interaction (or volume boundary)!

G4GammaGeneralProcess EPJ Web Conf. 214 (2019) 02046

G4GammaGeneralProcess			
Photoeffect	Rayleigh		
Compton	e+e- pair		
Gamma-nuclear	μ+μ- pair		

- SteppingManager see only 1 physics process
 - Only 1 mean free path
 - Plus transportation
- Enabled via UI command
 - In 11.1 is the default, UI command may be used to enable/disable
- Reduced number of instructions
 - Advantage in CPU ~5%
 - Extra PhysicsTables shared between threads – a bit more memory
- Final numbers for CPU/memory should be checked by users
- Woodcock tracking for ATLAS is implemented using inheritance

EM Physics Lists


Modifications in EM physics for Geant4 11.1

- G4EmStandardPhysics
 - Gamma general process
 - G4UrbanFluctuation
- G4EmStandardPhysics_option1
 - G4TransportationWithMsc
- G4EmStandardPhysics_option3
 - Gamma general process
 - G4UrbanFluctuation
 - G4LindhardSorensen ion ionisation model
 - MSC RangeFactor=0.03
- G4EmLowPPhysics
 - Gamma linear polarization is enabled by default
 - J. M. C. Brown and M. R. Dimmock, NIM B, 502, 2021, 176-182

- G4EmStandardPhysics_option4
 - Gamma general process
 - Penelope (instead of Livermore) ionisation for e- below 100 keV
 - EPICS2017 gamma cross sections for photoeffect and Rayleigh scattering
 - G4UrbanFluctuation
 - G4LindhardSorensen ion ionisation model
- G4EmLivermorePhysics
 - G4UrbanFluctuation
 - G4LindhardSorensen ion ionisation model
 - EPICS2017 gamma cross sections
- G4EmPenelopePhysics
 - G4UrbanFluctuation
 - G4LindhardSorensen ion ionisation model

Backscattering MC/data (M. Novak)

Penelope ionisation below 100 keV allows reproduce backscattering of electrons with higher accuracy as it was in Geant4 10.6

Extended utility classes to build EM physics

G4EmBuilder

- Provided initialization of basic EM particles
- Added instantiation of G4TransportationWithMsc

G4EmModelActivator

- Fixed instantiation of PAI model per region
- Fixed light ion instantiation per region
- G4EmDNABuilder utility for DNA physics
 - DNA processes instantiation
- All G4EmDNAPhysics X are inheriting of G4EmDNAPhysics
 - Common method ConstructParticle()
 - gamma, e+, e-, p, hydrogen, alpha, alpha+, GenericIon
 ConstructProcess() is now implemented via G4EmDNABuilder utility
 Set of parameters for G4EmDNABuilder is different for each X
 - Classes become much more compact; maintenance become significantly easier
 Standard upper energy limit 300 MeV
 - - For processes without DNA implementation standard processes/models are used
- G4EmDNAPhysicsActivator
 - Provides combined standard/DNA physics configuration on top of any standard Physics List
 - G4EmDNABuilder utility is used

10/25/2022

21

• Active developments were carried out for Geant4 11.1

- Improved code quality
- Improvement of CPU efficiency
- Addition of new models for DNA physics
- Improved Physics List configurations
- Recommendation for users for recent releases
 - Geant4 10.7.4 and 11.0.3
- Geant4 11.1 is in a good shape
 - Number of pending problems are resolved
 - Several new features to speed-up simulation

THANK YOU, NAPOLI!

