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Microdosimetric Kinetic Model

• based on time evolution 
equation for lethal and 
potentially lethal lesions

• can be applied to experimental 
data

• requires x-ray data

• gives a linear relation between 
average microdosimetric value 
and survival curve



How to score MKM values?

Geant4: 

+ widely validated for microdosimetry and 
clinical application

+ can score individual electrons’ energy 
deposit with an arbitrary accuracy

- modelling a specific patient is very difficult

- illegal to use for treatment planning

Raystation: 

+ easy patient modelling from CT scan

+ very fast proton, neutron, and alpha 
transport

- proton energy deposit modelled via 
tabulated stopping power

- spatial resolution ≳ mm 



Best compromise:

• simulate transport via Raystation and get some 
macroscopic value for a specific voxel

• apply look-up tables made via Geant4 that associate the 
previous value to a microdosimetric mean



What macroscopic value?

• kinetic energy spectrum per voxel
• usually enough to univocally identify a spectrum

• both Geant4 and Raystation can score it

• LUT: primary kinetic energy → microdosimetric means
• various monochromatic beams are simulated separately in Geant4

• for each beam a spectrum is obtained, and from it the corresponding 𝑦∗

• thus each mono beam is associated to a 𝑦∗

• put the two together!
• for each bin of a kinetic energy spectrum, find the corresponding 𝑦∗ from the LUT

• average those 𝑦∗ over the whole spectrum, with the bins’ heights as weights

• … and the resulting 𝑦∗ gives the MKM RBE
• or can be combined with other radiobiological models



LUT production
1/2: simulation setup

• monochromatic proton beams on a 1μm slab
• their kinetic energies are picked in a log range
• proton are shot directly into the water slab
• spectra are collected
• … and from them the kinetic energy → 𝑦∗ LUT populated
• while we’re at it, we also collect the other means (ത𝑦𝐹, ത𝑦𝐷) 

• repeat the procedure for neutron beams
• but not for heavier hadrons (more on this later)

Mono



LUT production
2/2: resulting LUT

• results are shown on the right
• LUT for all microdosimetric means

• only 𝑦∗ is really needed for the MKM

• are neutrons really relevant?
• their means in the LUT are extremely high

but

• their interaction rate is very low

• let’s apply these LUT to a simple test setup



Preliminary tests
1/2: a simple test setup

• build a TPS-like setup in Geant4
• place a 1mm voxel inside a water phantom

• at several depths throughout a 150MeV Bragg curve
(σ=1.5MeV spread)

• place a SV inside each pixel
• 1μm width, placed in the middle of the pixel

• it scores the microdosimetric spectrum “the normal way”
i.e. it gives a microdosimetric that can be used later as a reference

• kinetic energies of protons and neutrons are scored when they 
enter this SV
we apply the LUT to the resulting kinetic energy spectra

• let’s see what the resulting kinetic energy 
spectra look like!

Water phantom

Water voxel
1x1x1mm3

Water SV

Not to scale



Preliminary tests
2/2: results

• resulting kinetic energy spectra
• mostly composed of protons
• neutrons are also present, and build up with depth
• almost no particle with 𝑍 > 1

however

• inside the SV high 𝑍 events are recorded
• they cause energy deposits with large 𝑦

• very short path length: they are rarely seen entering the SV, so 
don’t contribute to the kinetic energy spectrum

• … but since their whole existence is confined within the SV, the 
LUT will include them “for free”!

• now we have some test spectra for the LUT…
• a set of kinetic energy spectra to which the LUT can be applied

• a set of microdosimetric spetra, to test whether the resulting 𝑦∗

are accurate 



LUT application
1/2: how to average the kinetic spectrum

• let’s apply the LUT to the test setup
• if it works, the same LUT can be used for other, more complex 

setups

• applied to each pixel’s kinetic energy spectrum
• the LUT means are averaged, with the kinetic energy spectrum as

weight

• the weighting is done by taking each mean’s definition and 
replacing its quantities with the ones in the LUT:

\bar{y}_{F} = \int y \cdot f(y) \, dy \,\, \rightarrow \,\, \sum_{i} \, \bar{y}_{F \,LUT} (E_i) \cdot f(E_i) \\
\bar{y}_{D} = \frac{1}{\bar{y}_{F}} \int y^2 \cdot f(y) \, dy \,\, \rightarrow \,\, \frac{1}{\bar{y}_{F}} \sum_{i} \, {(\bar{y}_{D \, 
LUT} (E_i))}^{2} \, \cdot f(E_i) \\
y^* = \frac{{y_0}^2}{\bar{y}_{F}} \int (1 - \exp( - y^2 / {y_0}^2 )) \cdot f(y) \, dy \,\, \rightarrow \,\, \frac{{y_0}^2}{\bar{y}_{F}} 
\sum_i (1 - \exp (- {{y^*}_{LUT}}^2 / {y_0}^2 ) ) \, \cdot f(E_i)

Microdosimetric mean from 
LUT, obtained from a mono 
beam with energy Ei

Height of the bin centred 
in Ei in the kinetic energy 
spectrum



LUT application
2/2: comparison with reference values

• the means obtained can be compared
with those of the reference spectrum

• the ones that were obtained from the SV in the 
reference simulation

• excellent agreement
• ... between reference simulation and LUT approach 

(almost) everywhere

• the former, accurate approach requires a cut ≲ 1µm

• … while the latter doesn’t require any electron 
tracking at all!

• we can now move onto Raystation



Raystation
1/2: preliminary tests

• can we reproduce the test 
setup in Raystation?

• even simpler setup: no beam spread

• resulting kinetic spectra are very similar

• best agreements at intermediate depths

• discrepancies at very low/high depths

• let’s apply the LUT
• ... and see how these discrepancies 

affect the results



Raystation
2/2: preliminary results

• good agreement around dose peak
• regardless of mean

• issues at low depths
• ത𝑦𝐷 is massively overestimated, 𝑦∗ less so

• LUT struggle with high energy event from fast 
protons

• issues at very high depths
• few protons reach this far

• neutrons become more relatively abundant: 
ignoring them underestimates ത𝑦𝐷

• a lot of events are caused by protons that stop 
before the SV: ignoring them overestimates ത𝑦𝐹



Next steps
in order or priority

• improve LUT for fast protons
• in the entrance ത𝑦𝐷 is strongly overestimated, and 𝑦∗ slightly

• the LUT have trouble dealing with rare high energy events caused by fast protons

• more statistics? Clever fitting of LUT at high energies?

• reduce discrepancies at high depths
• include neutron (and higher 𝑍?) LUT in test setup

• modify LUT production setup to account for electron-only events

• test more complex geometries in Raystation
• e.g. CT scans of patient

• apply to pre-existing clinical data
• where treatment planning was carried out with Raystation

• can we map NTC to hotspot of microdosimetric means?



完
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Raystation
3/2: preliminary results     
[extended]

• issues at very high depths
• few protons reach this far

• neutrons become more relatively abundant: 
ignoring them underestimates ത𝑦𝐷

• they cause very high energy events which could
explain why ത𝑦𝐷 in the reference simulation is 
that much higher

• a lot of events are caused by protons that stop 
before the SV: ignoring them overestimates ത𝑦𝐹

• usually their contribution is small, since this
kind of events is infrequent

• just after the maximum range of the primary 
protons they become much more relevant!

• they should be low energy events, which reduce 
the value of ത𝑦𝐹 but have limited effect on ത𝑦𝐷


