

Calculation of Absorbed Dose Coefficients for Internal Ex Vivo Irradiation of Lymphocytes Using GATE and Geant4-DNA

M. Salas-Ramirez¹, L. Maigne², M. Lassmann¹, U. Eberlein¹ ¹University of Würzburg, Department of Nuclear Medicine, Würzburg, Germany ²Laboratoire de Physique de Clermont, CNRS/IN2P3, Université Clermont Auvergne, Aubière, France

From Activity to Absorbed Dose Experimental Setup

Activity (MBq)

Background

Absorbed dose coefficient

 $d_{Blood}(mGy \cdot ml \cdot MBq^{-1})$ $d_{Lymphocyte}(mGy \cdot ml \cdot MBq^{-1})$ Absorbed Dose (Gy)

Quantification of DSB in lymphocytes

Blood Irradiation

1ml radioactive solution + 7 ml blood

Aim

- The aim of this study is to establish a relationship between activity and absorbed doses in the nucleus of lymphocytes using GATE^[2] (v9.1) at the macroscopic level and Geant4-DNA^[3] (v10.7) at the cellular level
 - Reproduce the spatial distribution of lymphocytes in the irradiation vial
 - Determine the absorbed dose coefficient to lymphocytes per milliliter of blood (*d_{Lymphocyte}*) for 1 h of internal ex vivo irradiation of whole blood :
 - Blood (vial)

- Source and Target (macroscopic simulation)
- Lymphocyte nuclei
- Target (microscopic simulation)

Methodology

Macroscopic and microscopic geometries:

Blood (8 ml vial)^[4]

A)- Whole simulation space B)- Whole Blood (red volume)

Lymphocyte model 1000 spheres of 3.75 μ m radius

Würzburg

Methodology:

Macroscopic and microscopic geometries: Blood (8 ml vial)^[4] Lymple

- The source was distributed randomly in the vial (blood, water material)
- GATE/Geant4 ion source definition
- QGSP_BIC_EMZ physics
- 10 radionuclides were simulated: ¹⁸F, ⁶⁸Ga, ⁹⁰Y, ^{99m}Tc, ¹²³I, ¹²⁴I, ¹³¹I, ¹⁷⁷Lu, ²²³Ra, and ²²⁵Ac
- Full decay chain for ²²³Ra, and ²²⁵Ac

Lymphocyte model

- The source was distributed randomly in the space non-occupied by the lymphocytes (blood, water material)
- GATE/Geant4 *ion source* definition. Same 10 radionuclides
- A phase space attached to each sphere
- Each sphere as a cold source

[4] M. Salas-Ramirez, et al. Z Med Phys. 2022

Lymphocyte

mass fraction

2.8E-08

Methodology:

Microscopic geometry:

Lymphocyte model One cell simplyfication

1000 spheres of $3.75 \ \mu$ m radius (water material)

1000 phase spaces

The 1000 phase spaces were translated to the position (0,0,0) and summed in one single phase space

Python code^[5]

Higher statistics (number of particles x 1000) Sampling of the center and periphery of the vial

Methodology

Lymphocyte model Geant4-DNA

NUCLEUS

- World: Sphere of 3.76 μ m radius filled with the G4Galactic material.
- Cell: Sphere of 3.75 μ m radius^[7] filled with the G4Water material.
- Nucleus: Sphere of 3.1 μ m radius^[7] filled with the G4Water material
- Change in the SteppingAction:
 - The clustering algorithm^[6] and scoring of the deposited energy ONLY in the nucleus
 - Excludes transportation processes as in the **dnaphysics** example
 - Use of a modified "G4EmDNAPhysicsActivator" to simulate Beta particles with energies > E_{max}

Methodology:

- Blood (8 ml vial)^[4]
- Absorbed dose coefficient per milliliter for 1 h internal ex vivo irradiation of blood $(d_{Blodd}(mGy \cdot ml \cdot MBq^{-1}))$

$$d_{Blood,8ml}\left[\frac{mGy \cdot ml}{MBq}\right] = \frac{E_{Deposited}\left[\frac{J}{nt}\right] \cdot N(1h)\left[\frac{nt}{Bq}\right]}{Mass_{Blood}[kg]} \times 10^9 \left[\frac{mGy}{Gy}\right] \left[\frac{Bq}{MBq}\right] \times 8[ml]$$

N(1h): number of nuclear transformations occurring in 1 h of blood irradiation

Methodology:

Lymphocyte model

 Absorbed dose coefficient to lymphocytes per milliliter of blood (*d_{Lymphocyte}*(*mGy* · *ml* · *MBq⁻¹*)) for 1 h of internal ex vivo irradiation of whole blood

$$\boldsymbol{d_{Lymphocyte,8ml}}\left[\frac{mGy \cdot ml}{MBq}\right] = \frac{E_{Deposited}\left[\frac{J}{nt}\right] \cdot N(1h)\left[\frac{nt}{Bq}\right]}{Mass_{Nucleus}[kg] \cdot 1000 \ cells} \times 10^{9}\left[\frac{mGy}{Gy}\right]\left[\frac{Bq}{MBq}\right] \times 8[ml]$$

9

Results

Evaluation of the Lymphocyte model – Beta and Gamma emitters

G4EmDNAPhysicsActivator = Activator

^{99m}Tc: DNAOpt6

DNAOpt6 + Activator

¹²³I: DNAOpt2 + Activator

Evaluation of the Lymphocyte model – Alpha emitters

Results

Relative error between macroscopic and microscopic simulation

Conclusions

- Except for positron emitters, the lymphocyte model adequately reproduces the whole blood absorbed dose coefficients $(d_{Blood}(mGy \cdot ml \cdot MBq^{-1}))$
- The lymphocyte model provides a large statistics (1000 cells) and sampled the vial in the center and periphery (different irradiation conditions)
- This study proposes a radiation transport model for further studies on DNA damage (DSB quantification) using Geant4-DNA

Thank you very much for your attention!

F-18 (DNAOpt4 + Activator)

Ga-68 (DNAOpt6 + Activator)

I-124 (DNAOpt6 + Activator)

Tc-99m (DNAOpt6)

I-123 (DNAOpt2 + Activator)

I-131 (DNAOpt4 + Activator)

Lu-177 (DNAOpt4 + Activator)

Ra-223 (DNAOpt2 + Activator)

22

Ac-225 (DNAOpt2 + Activator)

23

Y-90 (DNAOpt4 + Activator)

24

2.5