

Shubhangi Makkar :: PhD student :: Paul Scherrer Institute

Marina Béguin, Günther Dissertori, Judith Flock, Cristian Fuentes, Jan Hrbacek, Keegan McNamara, Christian Ritzer, Damien C. Weber, Antony Lomax, and Carla Winterhalter

Monte-Carlo simulations for the in-beam PETITION PET scanner

Geant4 International User Conference, October 25, 2022

Swiss National Science Foundation Grant No. CRSII5189969 PAUL SCHERRER INSTITUT PETITION

- PETITION (PET for InTensive care units and Innovative protON therapy), collaboration between ETH Zürich, CHUV, and PSI.
- Design of a modular PET detector by ETHZ.
- For patients under anaesthesia at CHUV.
- For range verification and biologically guided proton therapy at PSI.

Module of the PETITION scanner

PETITION project at PSI

- Opening for proton beam
- Mounted on patient table in Gantry 2
- On-line imaging of patient activation
- Phantom and head rest have to fit
- Can be rotated in steps of 90°

Mock-up of the PETITION scanner for PSI

Geometry	Ring PETITION (CHUV)	PETITION	DUAL HEAD PETITION
Number of	11	8	6
modules			
Crystal per	1800	1800	1800
module			
Crystal	$2.74 \times 2.74 \times 15 \text{ mm}^3$	2.74 × 2.74 × 15 mm ³	2.74 × 2.74 × 15 mm ³
dimensions			
Scanner	0 mm	256 mm	322 mm
opening			
Radial	161.3 mm	161.3 mm	161.3 mm
extent			
Axial FOV	179 mm	179 mm	179 mm

Data Processing Chain

5

Performance parameter: Sensitivity

- Detected count rate per unit of activity.
- Practical limitations on injected activity and acquisition time.
- Source: Point Na²² (r = 0.3 mm)
- Phantom: An acrylic cube of dimensions 10 x 10 x 10 mm³
- Source activity: 1 MBq
- Acquisition time: 50 seconds at each axial position

Axial sensitivity profile comparison

7

Performance parameter: Spatial Resolution

- Ability of a PET scanner to distinguish the fine details.
- Source: Point Na^{22} (r = 0.3 mm)
- Phantom: An acrylic cube of dimensions 10 x 10 x 10 mm³
- Axial positions: [-45, 0, 45] mm
- Radial positions: -50 to 50 mm
- Source activity: 1 MBq and acquisition time: 50 seconds
- Reconstructed PET image: OSEM algorithm (12 iterations, 4 subsets, no filtering)

Spatial Resolution comparison at axial center

PAUL SCHERRER INSTITUT PETITION image reconstruction

- Simulated water cylinder in GATE for 40 seconds.
- Water cylinder filled with uniform 1 MBq activity.
- Placed at the axial center.
- Reconstructed PET image: OSEM algorithm (4 subsets, 12 iterations, no filtering)

Reconstructed water cylinder with one position of PETITION scanner

PAUL SCHERRER INSTITUT PETITION image reconstruction

SSIM : 0.97

(Structural Similarity Index Measure)

K. McNamara et al., submitted to Phys. Med. Biol. (2022)

Phantom activation reconstruction

Conclusion and outlook

- The simulation to reconstruction workflow for the open ring geometry has been setup using GATE, CASTOR.
- Performance characteristics have been studied and compared against conventional dual head geometry.
- Simulation to activation reconstruction workflow has been simulated.
- Further improvement in image reconstruction using Deep Learning methods for non-conventional PET scanners.

Thank you

 Questions/Comments/ Feedback?

